Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Relativitätstheorie: Einstein im Quantentest

Mit ausgefeilten quantenphysikalischen Tests überprüfen Physiker einen Grundpfeiler der allgemeinen Relativitätstheorie, das einsteinsche Äquivalenzprinzip. Der Streit darüber, wie sich ihre Ergebnisse interpretieren lassen, berührt fundamentale Fragen, etwa: Wie funktioniert Gravitation auf atomarer Ebene?
Wirkung von Massen auf die vierdimensionale Raumzeit

Um die Natur zu beschreiben, brauchen Wissenschaftler Theorien. Diese sollen es erlauben, ihre Beobachtungen mit möglichst wenigen, einfachen Prinzipien zu erklären. Dabei darf eine Theorie grundsätzlich nie endgültig "richtig" genannt werden. Denn zukünftige Beobachtungen könnten ihren Voraussagen auch einmal widersprechen. Außerdem gilt eine Übereinstimmung sowieso immer nur im Rahmen der unvermeidlichen Messfehler. Deshalb ist es hilfreich, wenn es sich um eine gut formulierte Theorie handelt – das heißt, wenn die Ausgangsannahmen möglichst vollständig und klar dargelegt sind und zwischen ihnen und den Voraussagen eine Kette logischer Folgerungen liegt. Nur dann kann man hoffen, aus einem beobachteten Widerspruch auch wertvolle Schlüsse ziehen zu können, welche der Annahmen falsch waren. Dies ist aber meist nicht eindeutig möglich, so dass es oft zu lebhaftem Streit zwischen den Forschern kommt, die an unterschiedlichen Grundsätzen festhalten wollen. Ganz verschiedene Ansätze können oft lange nebeneinander existieren, bis genauere Experimente eine Entscheidung herbeiführen.

Trotzdem gelten heute einige physikalische Theorien als fundamental. Das bedeutet: Sie beschreiben (im Rahmen der Messgenauigkeit) eine große Zahl verschiedener Phänomene, sind möglichst allgemein anwendbar und natürlich in ihren Konsequenzen widerspruchsfrei. Dazu gehören vor allem Einsteins allgemeine Relativitätstheorie und die Quantentheorie. Beide hielten bislang unzähligen experimentellen Überprüfungen stand. ...

Kennen Sie schon …

Spektrum - Die Woche – Von der Entropie zur Quantengravitation

Die Verbindung von Schwerkraft und Quanten ist ein zentrales Rätsel der Physik. Die Informationstheorie liefert Antworten – und vielleicht den Schlüssel zur Quantengravitation. Außerdem: Eine Revolution des Bauens? Carbonbeton benötigt im Vergleich zu Stahlbeton nur einen Bruchteil des Materials.

Sterne und Weltraum – Raumzeit: Experimente zur Quantennatur

Die Relativitätstheorie Albert Einsteins ist das Meisterwerk zur Beschreibung der Schwerkraft. Seit Jahrzehnten steht aber die Frage im Raum, ob die Gravitation auf submikroskopischen Längenskalen modifiziert werden muss. Gibt es quantenhafte Austauschteilchen, die Gravitonen? In unserem Titelbeitrag stellen wir Überlegungen vor, wie man experimentell eine Quantennatur der Raumzeit testen könnte. Im zweiten Teil unseres Artikels zur Urknalltheorie beleuchten wir alternative Ansätze zur Dunklen Energie: das Local-Void- und das Timescape-Modell. Außerdem: Teil zwei unserer Praxistipps für die Astrofotografie mit dem Smartphone – Mond und Planeten im Fokus, die Ordnung im Chaos des Dreikörperproblems und woher stammen erdnahe Asteroiden?

Spektrum der Wissenschaft – Eine Theorie von allem: Lassen sich Quantenphysik und Schwerkraft vereinen?

Lassen sich Quantenphysik und Schwerkraft vereinen? In der aktuellen Ausgabe der PMT haben wir Beiträge für Sie zusammengestellt, in denen Forscherinnen und Forscher über die Ergebnisse ihrer Suche nach einer fundamentalen Theorie unserer Welt berichten. Entstanden ist eine erkenntnisreiche Sammlung an Beiträgen über die Quantennatur der Raumzeit, denkbaren Experimenten zum Nachweis von Gravitonen, Schwarzen Löchern, der Theorie der Quantengravitation, teleparalleler Gravitation und vielem mehr. Lesen Sie, welche Fortschritte es in den letzten Jahren gab, die Gesetze der Quantenwelt mit den geometrischen Konzepten von Raum und Zeit zu vereinigen, und welche Hürden dabei noch zu überwinden sind.

  • Quellen

Lan, S.-Y. et al.:A Clock Directly Linking Time to a Particle's Mass. In: Science 339, S. 554 - 557, 2013

Müller, H. et al.:A Precision Measurement of the Gravitational Redshift by the Interference of Matter Waves. In: Nature 463, S. 926 - 930, 2010

Peters, A. et al.:Measurement of Gravitational Acceleration by Dropping Atoms. In: Nature 400, S. 849 - 852, 1999

Schreiben Sie uns!

7 Beiträge anzeigen

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.