Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Teilchenphysik: Der lange Weg zum Higgs

Nach Jahrzehnten der Suche scheint das flüchtige Teilchen endlich gefunden zu sein, dessen besondere Eigenschaften eine neue Ära der Physik andeuten. Beteiligte Forscher lassen die entscheidenden Wochen und Monate bis zur offiziellen Verkündung der Entdeckung am 4. Juli 2012 Revue passieren – und riskieren einen Blick in die Zukunft.
Protonenkollision CERN

Am späten Abend des 14. Juni dieses Jahres machten sich einige Gruppen von Studenten und Postdocs am Large Hadron Collider (LHC) daran, ein bislang verschlossen gehaltenes Datenpaket zu untersuchen. Die gigantische Maschine am CERN, Europas Labor für Teilchenphysik bei Genf, hatte in den Monaten davor gewaltige Datenmengen produziert.

Die mehr als 6000 Physiker, die an den Großexperimenten des LHC arbeiten, gingen jedoch extrem vorsichtig vor, um ihre Auswertung nicht versehentlich zu verfälschen. So hatten sie beschlossen, zunächst bis Mitte Juni überhaupt nicht auf die Ergebnisse zu achten, also eine Art Blindstudie durchzuführen. Erst dann sollten alle Informationen zusammengebracht und untersucht werden. In jener Nacht schufteten die Jungforscher hektisch, um neue Indizien herauszufiltern. Zwar ist der LHC eine riesige Kollisionsmaschine mit zahlreichen Experimenten, doch nur die beiden größten davon – ATLAS und CMS – hatten die Aufgabe, das so genannte Higgs-Boson aufzuspüren. Dies ist das lange gesuchte Teilchen, welches das Standardmodell der Teilchenphysik komplettieren soll: die theoretische Beschreibung der subatomaren Welt.

Jeder der Detektoren registriert laufend in seinem Inneren die subatomaren Produkte aus unzähligen Protonenkollisionen, darunter vielleicht auch das flüchtige Higgs-Boson. Jedoch müssen die Messgeräte Unmengen von Teilchenspuren durchforsten, während der unaufhörliche Strom von Hintergrundteilchen mit niedriger Energie permanent droht, möglicherweise interessante Signale zu überdecken. Es ist, als wollte man aus einem Feuerwehrschlauch trinken und dabei versuchen, mit den Zähnen einige winzige Goldkörnchen herauszufischen.

Glücklicherweise wussten die Forscher ziemlich genau, wonach sie suchten. Nach dem katastrophalen Start des LHCs 2008 – nur neun Tage nach Beginn der Experimente schmolz eine Verbindungsnaht zwischen zwei Magneten, bildete sich ein gewaltiger Funkenüberschlag, der wiederum ein nahes Gefäß durchbohrte, setzte Tonnen von Helium frei und riss teure supraleitende Magnete aus ihrer Verankerung – konnten die Forscher seit 2011 große Datenmengen sammeln; genügend, um darin bereits auf erste Anzeichen von Higgs-Teilchen zu suchen.

Nachdem die Herbstrunde der Kollisionsläufe abgeschlossen war und der LHC für seine winterliche Wartungspause präpariert wurde, hielten ATLAS-Sprecherin Fabiola Gianotti und einer von uns (Tonelli), seinerzeit Sprecher des CMS, im überfüllten CERN-Auditorium ein Sonderseminar. Beide Detektoren hatten inzwischen unabhängig voneinander interessante Hinweise auf das Higgs-Teilchen in ihren Daten entdeckt. Zudem bestätigten sich die Datensätze gegenseitig. Sowohl ATLAS als auch CMS berichteten von mehreren Dutzend Ereignissen über dem erwarteten Hintergrund von Kollisionen, bei denen zwei Photonen mit einer Gesamtenergie von 125Milliarden Elektronvolt oder 125 GeV herausschossen (1 GeV ist in der Teilchenphysik die Standardeinheit von Masse und Energie; sie entspricht einer Protonenmasse). Solche Photonenpaare könnten der Theorie nach Zerfallsprodukte der kurzlebigen Higgs-Bosonen sein ...

Kennen Sie schon …

Spektrum der Wissenschaft – Unmögliches mit Quanten und Teilchen

»Unmögliches mit Quanten und Teilchen« nimmt Sie mit in die Welt der Quantenphänomene. Plasma-Labore widmen sich Themen vom Urknall bis zum Fusionsreaktor. Mehrere Experimente sollen der Unruh-Effekt demnächst nachweisen. Mit Lasern und kalten Atomen lassen sich manche Quantenphänomene auf größere Maßstäbe übertragen und somit extreme Phänomene eingehender untersuchen.

Spektrum der Wissenschaft – Eine Waage für das Vakuum

»Eine Waage für das Vakuum« berichtet über das »Archimedes-Experiment«, mit dem das Nichts präziser denn je vermessen werden soll. Außerdem: Phänotypische Plastizität: Jenseits der Gene; Kryptografie: Unknackbare Funktionen; Palimpseste: Alte Schriften vom Sinai.

Spektrum - Die Woche – Zu was das Coronavirus noch mutieren kann

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Aczel, A. D.: Der Welterklärer. Interview mit Steven Weinberg. In: Spektrum der Wissenschaft 12/2010, S. 34 – 37

Collins, G. P.: Entdeckungsmaschine der Superlative. In: Spektrum der Wissenschaft 9/2008, S. 32 – 39

Folger, T.: Abschied vom Tevatron. In: Spektrum der Wissenschaft 1/2012, S. 46 – 53

Kane, G.: Das Geheimnis der Masse. In: Spektrum der Wissenschaft 2/2006, S. 36 – 43

Körkel, T.: Der LHC nach Higgs. Interview mit Siegfried Bethke. In: Spektrum der Wissenschaft 10/2012, S. 60 – 66

Samulat, G.: Ring der Erkenntnis. In: Spektrum der Wissenschaft 9/2006, S. 80 – 87

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.