Direkt zum Inhalt

Planeten: Weicher Schirm um harten Kern

Warum ist Merkurs Magnetfeld viel geringer, als gängige Theorien voraussagen? Offenbar schirmen äußere Schichten des flüssigen Eisenkerns, die nicht an den Strömungen in größeren Tiefen teilnehmen, das Magnetfeld ab. Zukünftige Expeditionen zu dem sonnennächsten Planeten sollen zeigen, ob sich diese Theorie in der Praxis bewährt.
Merkur
Wie die Erde haben auch die meisten anderen Planeten Magnetfelder – jedoch mit unterschiedlicher Stärke und Struktur. Die Eigenschaften vieler planetarer Magnetfelder lassen sich gut mit der Dynamotheorie beschreiben: Sie entstehen durch Strömungen im elektrisch leitenden, flüssigen Kern. Nur Merkur schien sich bisher dieser Theorie zu widersetzen: Sein Magnetfeld ist hundert Mal schwächer als das der Erde, obwohl es theoretisch über dreißig Prozent der Erdmagnetfeldstärke verfügen müsste.

Ulrich Christensen vom Max-Planck-Institut für Sonnensystemforschung in Katlenburg-Lindau erklärt dieses Phänomen nun mit einem neuen Modell. Der Wissenschaftler nimmt an, dass äußere Bereiche von Merkurs flüssigem Eisenkern das Magnetfeld dämpfen – und damit die beobachtete Stärke erklären. Das Modell beruht auf der bekannten Annahme, dass bei Planeten im flüssigen äußeren Kern das Eisen stets mit einigen Prozent eines leichteren chemischen Elements vermischt ist, im Fall des Merkurs wahrscheinlich Schwefel; die Konzentrationsunterschiede dieses Elements im flüssigen Planetenkern treiben die Strömungen an.

Magnetfeld des Merkur | Vergleich von Erde und Merkur mit Eisen-Kern (der feste Teil ist hellblau, der flüssige weißlich) und Silikatmantel (braun): Die Größe des festen inneren Kerns von Merkur ist nicht genau bekannt. Stellt man das außerhalb der Planeten gemessene Magnetfeld durch Stabmagneten dar, entspräche deren Größenverhältnis den in die Planetenbilder eingezeichneten.
Nach dem neuen Modell der Forscher geschieht das bei Merkur nur in den inneren Bereichen seines flüssigen Kerns. Den Computersimulationen zufolge bildet sich dort ein starkes Magnetfeld. Weiter außen unterbindet eine stabile Temperaturschichtung die Strömung. Nur ein Bruchteil des Dynamofeldes gelangt durch den ruhenden Teil des Eisenkerns nach außen. Merkurs Dynamo arbeitet also nur tief in dessen flüssigen Kern. "Im Gegensatz dazu ist der flüssige Kern der Erde wahrscheinlich vollständig in Bewegung", sagt Christensen, "deshalb ist das Magnetfeld der Erde so viel stärker."

Die letzte Erforschung von Merkurs Magnetfeld liegt schon dreißig Jahre zurück, als die Raumsonde Mariner 10 den Planeten in den Jahren 1974 und 1975 passierte. Die damals gewonnenen Daten zeigen, dass das Feld globaler Natur ist und wahrscheinlich nicht mit der Magnetisierung von Mineralien in der Kruste des Planeten zu erklären ist. Aktuelle Missionen werden Merkurs Magnetfeld allerdings viel besser charakterisieren als Mariner 10.

Derzeit ist die Messenger-Raumsonde der amerikanischen Raumfahrtbehörde Nasa auf dem Weg zum Merkur. Das europäische Pendant Esa bereitet zusammen mit der japanischen Raumfahrtagentur Jaxa die Bepi Colombo Mission vor, bei der zwei Sonden in eine Umlaufbahn um Merkur einschwenken. Beide Missionen werden die Modellvorhersagen der Max-Planck-Forscher über Merkurs Magnetfeld überprüfen. "Sollten sich unsere Vorhersagen bestätigen, räumt das letzte Zweifel daran aus, dass die Dynamotheorie für planetare Magnetfelder allgemein gültig ist", sagt Christensen.

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.