Direkt zum Inhalt

Kommentare - - Seite 1

Ihre Beiträge sind uns willkommen! Schreiben Sie uns Ihre Fragen und Anregungen, Ihre Kritik oder Zustimmung. Wir veröffentlichen hier laufend Ihre aktuellen Zuschriften.
  • "Nachricht von den ersten Sternen"

    07.08.2018, Fritz Schauer, Kirchzarten


    Im obengenannten Artikel in SuW 8/2018 von Jan Hattenbach auf Seite 22 unten heißt es: "Das UV-Licht drang in die Wasserstoffwolken ein und änderte den Anregungszustand der Atome, und zwar so, dass die Atome Photonen der kosmischen Hintergrundstrahlung absorbieren konnten."

    Hier habe ich ein Verständnisproblem: Die Energie des 21cm-Spinübergangs ist mit 5,9 µeV extrem klein im Vergleich zu den Energien der UV-Übergänge. Warum bedurfte es einer so großen Änderung des Anregungszustands der H-Atome, damit diese die Hintergrundstrahlung absorbieren konnten? Sollte eine Absorption durch Spinanhebung nicht sogar besser aus dem Grundzustand des Atoms möglich sein?

    Dass die Re-Ionisierug durch die ersten Sterne die Absorption beendete, versteht sich dagegen von selbst, da ionisierte H-Atome keinen Elektronenspin haben können.


    Stellungnahme der Redaktion

    Zwei weitere Leser haben sich mit sinngemäß der gleichen Frage an uns gewandt. Es ist deshalb anzunehmen, dass noch deutlich mehr über diese scheinbar unphysikalische Tatsache gestolpert sind. Dennoch ist die Aussage korrekt. Ihre Grundlage ist ein derart verwickelter physikalischer Mechanismus, dass er sogar einen eigenen Namen besitzt: Wouthuysen–Field-Effekt bzw. Wouthuysen–Field-Kopplung. Es würde zu weit gehen, ihn hier in einer Leserbriefantwort zu erklären. Deshalb sei nur der entsprechende Wikipedia-Artikel genannt (englisch; einen entsprechenden deutschen gibt es nicht): https://en.wikipedia.org/wiki/Wouthuysen%E2%80%93Field_coupling.

    Eine grobe Erklärung, die einer der Autoren der Originalpublikation auf Anfrage an Herrn Hattenbach geschrieben hat, sei hier angefügt. Sie ist ebenfalls englisch - und im vollen Physiker-Kauderwelsch, also nicht für jedermann.

    U. Bastian

    Dear Jan,

    you are correct in saying that the "The energy of the hyperfine line is small compared to the UV energies" but what matters is the relative populations of the 2 lowest energy states which form the 21_cm line. The lowest of these is when the electron and proton spins are anti-aligned and the higher is when the electron and proton spins are aligned.

    If all the hydrogen atoms were in the lowest energy state we would see a very strong absorption of the CMB, while if all the hydrogen atoms were in the higher state we would see amplification of the CMB, but actually both states are nearly equally populated and the small imbalance is characterized by the "spin temperature". When spin temperature equals the CMB temperature we would see neither emission nor absorption as there is an exact balance between extra photons that are emitted when the CMB
    photon causes a 21-cm photon to be emitted and the hydrogen atom drops to the lower state and an absorption when the CMB photon is absorbed and the hydrogen atom is excited into the higher state.

    Without the ultraviolet light or significant collisions between the hydrogen atoms the CMB makes (or "couples") the spin temperature equal to the CMB temperature. When the ultraviolet light turns on it excites the hydrogen atoms up and back down from higher energy states according to Wouthuysen–Field coupling. This is a fairly complicated process described at

    https://en.wikipedia.org/wiki/Wouthuysen%E2%8%93Field_coupling

    which "couples" the spin temperature to the kinetic temperature of the hydrogen gas, which is lower than the CMB temperature, and puts more atoms in the lower state which in turn results in absorption of the CMB.

    Your last comment: "Any additional excitation would increase the number of atoms in the excited state and therefore rather impede the absorbtion of CMB photons."
    does not hold because the Wouthuysen–Field effect goes both ways - it also decreases the number of atoms in the lower state - which it turn results in an imbalance in which the spin temperature drops to the kinetic temperature.
    [[which may be lower than the CMB temperature; Zusatz von U. Bastian]]

    Best regards, Alan Rogers

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.