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Vor 1500 Jahren wirkte ĀRYABHATA (476 – 550) 

 
ĀRYABHATA ist der erste bedeutende indische Mathe-
matiker und Astronom, dessen Name der Nachwelt über-
liefert ist. Um ihn von einem anderen Astronomen glei-
chen Namens zu unterscheiden, der im 10. oder 11. Jahr-
hundert lebte, wird er oft auch als ĀRYABHATA I. oder 
ĀRYABHATA DER ÄLTERE bezeichnet. Es gibt Hinweise 
darauf, dass ĀRYABHATA in Kusumapura, in der Nähe des 
heutigen Patna (Bundesstaat Bihar), geboren wurde, der 
Hauptstadt des einst mächtigen Gupta-Reichs, das sich 
vom Punjab (heute Pakistan) bis zum Golf von Bengalen 
erstreckte, und dass er dort als Leiter der Universität 
und als Lehrer tätig war. Andere Quellen geben Ashmaka 

(Assaka) in Südindien als Geburtsregion an. – Welche Bedeutung ĀRYABHATA innerhalb 
der Wissenschaftsgeschichte Indiens einnimmt, wird aus der 
Tatsache deutlich, dass der erste indische Erdsatellit, der 1975 
mithilfe einer sowjetischen Trägerrakete ins All transportiert 
wurde, den Namen des berühmten Wissenschaftlers trug. 

ĀRYABHATA schrieb mindestens zwei Bücher, wobei die Existenz 
des einen der beiden Bücher nur durch Zitate später lebender 
Autoren gesichert ist. Das andere Werk, von der Nachwelt 
Āryabhatīya genannt, wurde im Jahr 499 verfasst, wie man aus 
im Werk enthaltenen Kalenderrechnungen schließen kann. Es 
gehörte mit zu den Schriften, die um 820 im Haus der Weisheit 
in Bagdad ins Arabische übersetzt wurden. MOHAMMED AL 

KHWARIZMI nahm in seiner Algebra Bezug auf dieses Buch. 

Āryabhatīya ist in Sanskrit verfasst, der alt-indischen Sprache 
der Gelehrten und Ritualsprache der Schriften des Hinduismus, 
Buddhismus und Jainismus (vergleichbar der früheren Rolle des 
Lateinischen in Europa), für die PĀNINI im 4. Jahrhundert v. Chr. eine Grammatik 
erstellte, der ersten Grammatik in der Geschichte der Menschheit.  
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Āryabhatīya besteht aus 118 Versen, die sich mit Themen aus der Mathematik, der 
Astronomie und der Zeitrechnung beschäftigen. Die Schrift beginnt mit einer 
Lobpreisung Brahmas, dem Schöpfer der Erde und des Weltalls. Dann folgt eine 
Beschreibung des astronomischen Systems. ĀRYABHATA geht davon aus, dass sich die 
Erde täglich um sich selbst dreht, und erklärt so die Bewegung des Sternenhimmels. 
Ansonsten vertritt er ein geozentrisches Weltbild: Sonne, Mond und Planeten 
bewegen sich um die Erde; Abweichungen von der gleichförmigen Bewegung erklärt er 
durch unterschiedlich große Epizykel. Er bestimmt die Umlaufzeiten von Sonne, Mond 
und Planeten und berechnet hieraus, dass sich die gemeinsame Konjunktion dieser 
Himmelskörper alle 4,32 Millionen Jahre wiederholt. Ein Tag für Brahma dauert für 
Menschen 4,32 Milliarden Jahre. – Seine Erklärung von Mond- und Sonnenfinsternis-
sen als natürliche Vorgänge ersetzt die überlieferten Vorstellun-
gen, dass diese Finsternisse durch Dämonen verursacht werden. 

Der letzte Vers des ersten Teils enthält eine Liste mit 24 Zahlen. 
Es heißt dort: Die 24 Werte des Sinus lauten:  
225, 224, 222, 219, 215, 210, 205, 199, 191, 183, 174, 164, 154, 143, 
131, 119, 106, 93, 79, 65, 51, 37, 22, 7.  

An späterer Stelle erklärt ĀRYABHATA dazu: Unterteilt man einen Viertelkreis mit 
Radius 3438 in 24 gleich große Sektoren, dann haben die den Winkeln von 3° 45’,  
7° 30’, 11° 15’, 15°, …, 90° gegenüberliegenden Höhen die Längen 225, 225 + 224 = 449,  
449 + 222 = 671, 671 + 219 = 890, …, 3438. Der ungewöhnlich erscheinende Wert für 
den Radius erklärt sich so: Ein Vollwinkel umfasst 360° = 360 · 60’ = 21600’; der 
Umfang eines Kreises mit Radius 3438 L.E. beträgt ziemlich genau 21600 L.E., sodass 
jeder Bogenminute ein Bogen der Länge 1 L.E. zugeordnet werden kann. 

Im Unterschied zu den antiken griechischen Mathematikern 
tabelliert ĀRYABHATA also nicht die Länge der Sehnen, die einem 
Winkel gegenüberliegen, sondern als Erster die Längen der halben 
Sehnen. Er bezeichnet sie als ardha-jya, kurz: jya, woraus in der 
arabischen Übersetzung jiba wird, ein Wort ohne Bedeutung. Bei 
der Übersetzung der Toledodaner Tabellen des AL-ZARQALI ins 
Lateinische verwechselt GERHARD VON CREMONA jiba mit dem tat-

sächlich existierenden arabischen Wort jaib, 
was übersetzt sinus bedeutet.  

Die Berechnung der einzelnen Tabellenwerte erfolgt ausgehend 
von AD = sin(30°) = ½ ; dann kann mithilfe des Satzes von PYTHA-
GORAS MD = cos(30°) berechnet werden sowie der Sinus versus des 
Winkels BD = versin(30°) = 1 – cos(30°) = … = 2 · sin²(15°) und 

hieraus dann weiter der Wert von sin(15°) usw. 

Der zweite Teil der Āryabhatīya enthält Abhandlungen (siddhānta) über Mathematik 
(ganita, von gana = zählen). Für die Darstellung von Zahlen verwendet ĀRYABHATA 
Kunstwörter, die er durch eine von ihm erfundene Verschlüsselung erhält: Für die 
Zahlen 1, 2, 3, …, 25 und 30, 40, 50, …, 100 verwendet er die 25 + 8 = 33 Konsonanten 
des Sanskrit-Alphabets, ergänzt um die 9 Vokale, durch die sich ergibt, mit welchen 
Zehnerpotenzen die Zahlen multipliziert sind. Die Abfolge der Silben dieser Kunst-
wörter spielt in den Merkversen (sūtras) eine wichtige Rolle.  



Mathematische Methoden und Lehrsätze wurden in Indien traditionell 
in dieser Form vermittelt. Die sūtras dienen als Gedankenstütze für 
das anzuwendende Verfahren und sollen von den Schülern auswendig 
gelernt werden. Für unbedarfte Leser erscheint daher der im 4. und 5. 
Vers beschriebene Algorithmus zum Ziehen der Quadrat- bzw. der 
Kubikwurzel aus einer Zahl im 10er-System zunächst unverständlich. 
Erst durch ein Beispiel wird er nachvollziehbar:  

Dividiere immer die Nicht-Quadrat-Stelle durch zweimal die Quadrat-
wurzel. Wenn dann das Quadrat von der Quadrat-Stelle subtrahiert ist, trage den 
Quotienten an der nächsten Stelle ein.  
Offensichtlich beherrscht ĀRYABHATA 
die zugrunde liegende Formel   
(100a + 10b + 1c)² =  
(100a)² + 2 · (100a) · (10b) + (10b)²  
+ 2 · (100a + 10b) · (1c) + (1c)²  

Das Verfahren zum Ziehen der Kubik-
wurzel ergibt sich aus:  
(10a + 1b)³ = (10a)³ + 3 · (10a)² · (1b) + 3 · (10a) ·(1b)² + (1b)³  

Dividiere die zweite Nicht-Kubik-Stelle 
durch das Dreifache des Quadrats der 
Kubikwurzel. Das Quadrat multipliziert 
mit drei und dem vorher Erhaltenen 
muss von der ersten Nicht-Kubik-Stelle 
und die dritte Potenz von der Kubik-
Stelle subtrahiert werden. 
Hinweis: Bis zum 7. Jahrhundert sind die in Dezimalzahlen auftretenden Nullen an den 
Lücken in der Ziffernfolge erkennbar (sūnya (Sanskrit) = Leere, arabisch: sifr); erst 
danach werden die Lücken durch einen Punkt oder einen kleinen Kreis ersetzt, den 
Vorläufern der Ziffer „0“. 

In Vers 6 wird der Flächeninhalt eines Dreiecks als Produkt der halben Basis mit der 
Höhe angegeben und das Volumen eines Tetraeders („Sechskant“) mit einer analog 
gebildeten Formel, aber fälschlicherweise als halbe Grundfläche mal Höhe. Vers 7 
enthält die korrekte Formel für die Kreisfläche (halber Umfang mal Radius) und eine 
ziemlich ungenaue Näherungsformel für das Kugelvolumen (Flächeninhalt eines Kreises 
mal Quadratwurzel aus dem Flächeninhalt, d. h. V ≈ 1,77 · π · r³). 

In Vers 9 gibt ĀRYABHATA ohne Begründung an, wie die Kreiszahl π berechnet werden 
kann: Addiere 4 zu 100, multipliziere mit 8 und addiere dann 62000. Das Ergebnis ist 
ungefähr der Umfang eines Kreises mit Durchmesser 20000.  

Tatsächlich ist 1416,320000
62832 ≈  ein besserer Näherungswert 

für π als der vor ĀRYABHATA gewöhnlich benutzte Wert von 
1623,310 ≈ , der auch in China bis zum 5. Jahrhundert 

verwendet wurde (z. B. von ZHANG HENG), bis ZU CHONGZHI 
aus Berechnungen an einem regulären 24576-Eck die Kreis-
zahl π auf sieben Dezimalstellen genau bestimmte – zur gleichen Zeit wie ĀRYABHATA, 
der „nur“ ein reguläres 384-Eck betrachtete. 



Die Verse 14 bis 16 beschäftigen sich mit Schattenlängen von Gnomonen (senkrecht in 
den Boden eingelassenen Stäben) und der Möglichkeit, mithilfe zweier gleichlanger, 
hintereinander stehender Stäbe der Länge g die Entfer-
nungen e1 bzw. e2 und die Höhe h einer Lichtquelle zu 
bestimmen. Aus den Schattenlängen s1 bzw. s2 und dem 
Abstand a = e2 – e1  der Schattenspitzen ergibt sich: 
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Die Verse 19 bis 22 enthalten verschiedene Regeln zu arithmetischen Folgen, außer-
dem Formeln für die Summe der ersten n natürlichen Zahlen, der ersten n Quadrat- 
bzw. Kubikzahlen sowie für die Summe der ersten n Dreieckszahlen:  
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1 +−+⋅=+⋅+⋅⋅=+++++++++++ nnnnnn  

Die Verse 23 bis 24 geben Regeln für Summen, Differenzen und Produkte von Zahlen 
an, die sich aus binomischen Formeln ergeben: Das Produkt zweier Zahlen ist gleich 
der halben Differenz aus dem Quadrat der Summe und der Summe der Quadrate der 
beiden Zahlen:  [ ]²)²()²(2

1 bababa +−+⋅=⋅ . – Kennt man das Produkt a · b und die 
Differenz a – b zweier Zahlen, dann kann man die Zahlen a,  b wie folgt bestimmen:    

( ))()²(42
1 babaaba −+−+⋅=  und ( ))()²(42

1 babaabb −−−+⋅= . 

In den nächsten Versen wird erläutert, wie man mit Brüchen rechnet 
und wie Verhältnisgleichungen gelöst werden. Aus einer Aufgabe zur 
Zinsrechnung wird deutlich, dass auch das Lösen quadratischer 
Gleichungen bekannt ist, auch wenn dieses Thema nicht explizit ange-
sprochen wird. – In Vers 31 untersucht er, wann sich zwei Objekte 
begegnen werden, deren Ort und Geschwindigkeit bekannt sind, bzw. 
wann sie sich in der Vergangenheit begegnet sind, wenn sie sich zurzeit voneinander 
entfernen. Diese Methode ist in der Astronomie wichtig, wenn es darum geht, 
Konjunktionen von Himmelskörpern zu bestimmen.  
Die letzten beiden Verse des Abschnitts über mathematische Methoden widmet 
ĀRYABHATA dem Lösen von Kongruenzgleichungen, von ihm als kuttaka bezeichnet 
(wörtlich: Schleifmaschine, mit der etwas zerkleinert wird); wie beim euklidischen 
Algorithmus werden schrittweise die auftretenden Koeffizienten verkleinert.  

Beispiel: Gesucht ist die kleinste natürliche Zahl n, die bei Division durch 13 den  
Rest 4 lässt und bei Division durch 19 den Rest 7. Es gilt also: n = 13a + 4 = 19b + 7. 

Nach a aufgelöst ergibt sich: cb
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c . Setzt man für d die kleinstmögliche 

natürliche Zahl, also d = 1, ein, dann erhält man rückwärts gehend nacheinander: c = 9, 
b = 2 · 9 + 1 = 19  und  a = 1 · 19 + 9 = 28  und somit  n = 13 · 28 + 4 = 368 = 19 · 19 + 7. 

ĀRYABHATAs Werk hatte erheblichen Einfluss auf die Entwicklung der Mathematik, 
nicht nur in Indien. Um 630 verfasste BHASKARA I. hierzu einen umfangreichen Kom-
mentar, und BRAHMAGUPTA, der zur selben Zeit lebte, setzte ĀRYABHATAs Arbeit fort. 
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