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 Vor 225 Jahren geboren    BERNARD BOLZANO    (05.10.1781 – 18.12.1848) 
 

BERNARD PLACIDUS JOHANN NEPOMUK BOLZANO wurde als 
viertes von zwölf Kindern in Prag geboren; nur er und ein 
Bruder erreichten das Erwachsenenalter. Sein Vater 
war ein aus Norditalien stammender Kunsthändler 
(Bolzano ist der italienische Name von Bozen), seine 
Mutter Tochter eines Kaufmanns aus Prag. Die Eltern 
erzogen ihn in tiefer Religiosität; er besuchte ein 
Gymnasium in kirchlicher Trägerschaft, bevor er mit 15 
Jahren ein Studium der Philosophie, Mathematik und 
Physik an der Prager Karls-Universität aufnahm, mit 19 
ein Theologiestudium. Wenige Tage nach seiner Promo-
tion über die Frage, was einen korrekten mathema-

tischen Beweis ausmacht, wurde er zum Priester geweiht. 

Prag war damals die Hauptstadt des Königreichs Böhmen, Teil des Habsburger Reichs. 
Zwar hatte Kaiser Joseph II seinen Untertanen im Jahr 1781 Religionsfreiheit 
gewährt, die Freiheitsideen der Französischen Revolution forderten jedoch mehr: 
generelle Gedankenfreiheit und Freiheit für die Nationen. Zur Abwehr der Libera-
lisierungsbestrebungen verfolgte Kaiser Franz I einen konservativen Kurs, der 1804 
durch Einrichtung eines Lehrstuhls für Religionsphilosophie gestützt werden sollte. 
BOLZANO bewarb sich auf diesen Lehrstuhl, gleichzeitig auch auf einen für Elementar-
mathematik, gleichermaßen qualifiziert für beide. Schnell merkte die Obrigkeit, dass 
man ihn für den „falschen“ Lehrstuhl berufen hatte: Als Führer der „Böhmischen 
Aufklärung“ verbreitete er in seinen Vorlesungen pazifistisches und sozialistisches 
Gedankengut. 1819 wurde er wegen der Verbreitung von „Irrlehren“ seines Amtes 
enthoben und wegen Häresie angeklagt. Unter Hausarrest stehend, beschäftigte er 
sich weiter mit philosophischen und mathematischen Fragen. 1837 erschienen zwei 
seiner wichtigsten Werke: „Von dem besten Staate“ und „Wissenschaftslehre“; aber 
erst 1840 wurde ihm wieder erlaubt, Schriften nicht-theologischen Inhalts in der 
Königlich Böhmischen Gesellschaft der Wissenschaften zu veröffentlichen. 
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Das Werk „Von dem besten Staate“ war eine sozialistische Utopie, in der er sich für 
ein sehr weit gehendes Gleichheitsprinzip aussprach und Eigentum 
kritisierte, das nicht durch Arbeit erworben war. In seiner „Wissen-
schaftslehre“ setzte er sich mit der Frage des Urteilens und 
Fürwahrhaltens auseinander und beschrieb die Entwicklung der Logik 
als Wissenschaft – von ARISTOTELES bis KANT. Im Gegensatz zu KANT 
und HEGEL vertrat er die Ansicht, dass Zahlen, Ideen und „Sätze-an-
sich“ auch unabhängig von den Personen existieren, die diese „denken“. 

Die Werke BOLZANOs fanden (u. a. wegen des Publikationsverbots) zu seinen Leb-
zeiten nicht die Anerkennung, die sie verdient gehabt hätten; mit vielen Überlegungen 
war er seiner Zeit weit voraus. So kam es, dass etliche seiner Ideen und Gedanken-
gänge erst Jahrzehnte später wiederentdeckt wurden. Bereits in seinen frühen 
mathematischen Schriften bemühte sich BOLZANO um die Präzisierung der Beweise 
und der darin enthaltenen Argumentationen. 1810 erschienen seine „Beyträge zu einer 
begründeteren Darstellung der Mathematik“. 1816 folgte „Der binomische Lehrsatz, 
als Folgerung aus ihm der polynomische, und die Reihen, die zur Berechnung der 
Logarithmen und Exponentialgrößen dienen, genauer als bisher erwiesen“. BOLZANO 
kritisierte in diesem Beitrag die geniale, aber nicht genügend exakte 
Vorgehensweise von LEONHARD EULER (1707 – 1783) und JOSEPH LOUIS 

LAGRANGE (1736 – 1813). Mit dem Binomischen Lehrsatz ist hier die 
Binomische Reihe gemeint, die man nicht nur für natürliche 
Exponenten, sondern auch für ganze, rationale, ja sogar für beliebige 
reelle Exponenten n definieren kann: 
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als jede gegebene Größe gemacht werden kann, wenn man die Menge 
der Glieder in der Reihe genug nimmt“, und, dass dies nur für |x| < 1 
sinnvoll ist. 

1817 verfasste er die Abhandlung  „Rein analytischer Beweis des Lehrsatzes, daß 
zwischen je zwei Werten, die ein entgegengesetztes Resultat gewähren, wenigstens 
eine reelle Wurzel der Gleichung liege“, heute bezeichnet als der  

Nullstellensatz von BOLZANO: Ist eine Funktion f in einem abgeschlossenen Intervall 
[a ; b] stetig (a, b ∈ IR) und ist außerdem f(a) · f(b) < 0, dann liegt mindestens eine 
Nullstelle von f im Innern des Intervalls. 

Eine wichtige Voraussetzung für den Beweis dieses Nullstellen-Satzes ist eine exakte 
Definition des Begriffs der Stetigkeit; für BOLZANO bedeutet Stetigkeit in einem 
Intervall, „daß wenn x irgend ein solcher Werth [aus dem Intervall] ist, der Unterschied  
f(x+ω) – f(x)  kleiner als jede gegebene Größe gemacht werden könne, wenn man ω so 
klein, als man nur immer will, annehmen kann“ – eine Formulierung, die sich inhaltlich 
nur wenig von der in Mathematik-Vorlesungen heute verwendeten unterscheidet.  



CAUCHYsches Konvergenzkriterium:  
Eine Folge  (an)n∈IN  konvergiert genau dann, wenn zu jedem ε>0 ein n0 ∈ IN existiert, so 
dass für alle n, m mit n ≥ n0 und m ≥ n0 gilt: |an – am| < ε . 

AUGUSTIN LOUIS CAUCHY (1789 – 1857) veröffentlichte diesen mathematischen Satz 
im Jahr 1821; bereits vier Jahre vorher hatte BOLZANO in der o. a. Schrift die gleiche 
notwendige und hinreichende Bedingung für die Konvergenz einer unendlichen Reihe 
(also einer Summenfolge) angegeben, ohne dass sie beachtet worden war: „Wenn eine 
Reihe von Größen F1(x), F2(x), F3(x), ..., Fn(x), ..., Fn+r(x), von der Beschaffenheit ist, daß 
der Unterschied zwischen ihrem n-ten Glied Fn(x) und jedem späteren Fn+r(x), sey dieses 
jenem auch noch so weit entfernt, kleiner als jede vorgegebene Größe verbleibt, wenn 
man n groß genug angenommen hat: so gibt es jedesmahl eine gewisse beständige 
Größe, und zwar eine, der sich die Glieder dieser Reihe immer mehr nähern, und der sie 
so nahe kommen, als man nur will, wenn man die Reihe weit genug fortsetzt.“  
Er schreibt, für ihn enthalte die Existenz eines Grenzwertes (von ihm „eine gewisse 
beständige Größe“ genannt) „nichts Unmögliches“, da es „bey dieser Voraussetzung mög-
lich wird, diese Größe genau, als man nur immer will, zu bestimmen“. Den Mathematikern 
jener Zeit war nicht bewusst, dass dies ist ein Zirkelschluss ist, da man vor der Defi-
nition des Grenzwerts erst überhaupt einmal definieren muss, was eine reelle Zahl ist. 

Um 1860 formulierte KARL WEIERSTRASS (1815 – 1897) einen Satz, von dem man eben-
falls erst viele Jahre danach bemerkte, dass BOLZANO ihn bereits 1817 notiert hatte: 

Satz von BOLZANO-WEIERSTRASS: Jede beschränkte unendliche Zahlenfolge hat 
mindestens einen Häufungswert. 

Dabei nennt man eine reelle Zahl a Häufungswert einer Folge von reellen Zahlen, wenn 
in jeder noch so kleinen Umgebung von a noch unendlich viele Folgenglieder liegen. 

Erst 1930 wurde entdeckt, dass es BOLZANO (lange vor 
Weierstrass) gelungen war, eine Funktion zu konstruieren, 
die auf einem Intervall überall stetig, aber an keiner 
Stelle differenzierbar ist. Diese Funktion ist Grenzfunk-
tion einer Folge von abschnittsweise definierten linearen 
Funktionen, vgl. Abbildung links, Funktionen f1, f2, f3.  
Auch in seiner letzten Schrift, den „Paradoxien des 
Unendlichen“ (1847), findet man Überlegungen, die erst 
viele Jahre später GEORG CANTOR (1845 - 1918) aufgreift: 
„Ich behaupte nämlich: Zwei Mengen, die beide unendlich 
sind, können in einem solchen Verhältnisse zueinander 
stehen, daß es einerseits möglich ist, jedes der einen Menge 

gehörige Ding mit einem anderen zu einem Paare zu verbinden mit dem Erfolge, daß kein 
einziges Ding in beiden Mengen ohne Verbindung zu einem Paare bleibt, und auch kein 
einziges in zwei oder mehr Paaren vorkommt; und dabei ist es doch andererseits möglich, 
daß die eine dieser Mengen die andere als bloßen Theil in sich faßt, so daß die Vielheiten, 
welche sie vorstellen, wenn wir die Dinge derselben alle als gleich, d.h. als Einheiten 
betrachten, die mannigfachsten Verhältnisse zueinander haben.“  

Beispiel: Die Abbildung  x � y = 2x  ordnet jedem Punkt des Intervalls [0 ; 1] 
umkehrbar eindeutig einen Punkt des Intervalls [0 ; 2] zu; obwohl die eine Menge 
echte Teilmenge der anderen ist, sind beide Mengen „gleichmächtig“. 
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