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Zusammenfassung

Algebraische Flachen konnen glatt sein oder auch einige Spitzen ha-
berll. Beschriinkt man sich auf Flichen mit gewissen Eigenschaften,
z.B. auf Flachen mit einem festen sogenannten Grad, so konnte man
bereits im 19. Jahrhundert beweisen, dass jede solche Flache nur end-
lich viele isolierte Singularitdten haben kann. Unmittelbar stellt sich
die Frage: Wie viele?

Eine Fliache vom Grad 7 mit 99 Singularitéten.

Um diese Frage zu beantworten, muss man fiir jeden Grad (das ist
eine natiirliche Zahl d € {1,2,3,...}) eine Zahl u(d) finden, so dass es
tatsachlich eine Fliche vom Grad d mit u(d) Singularitdten gibt und
so dass man irgendwie zeigen kann, dass eine solche Flache auch nicht
mehr Singularitéten besitzen kann.

Jede Flache vom Grad d, die alle vorher bekannten Zahlen von Singu-
laritdten auf einer Fliche von festem Grad d iibertrifft, ist ein neuer
Weltrekord. Schafft man es aufserdem noch zu beweisen, dass eine sol-
che Fliache nicht mehr Singularitdten besitzen kann, so hat man sogar
gezeigt, dass der Weltrekord nie mehr zu verbessern ist!

Wir werden sehen, dass bei der Suche nach Weltrekord-Flachen viel in-
teressante Mathematik und insbesondere Geometrie ins Spiel kommt;
sowohl Platonische Kérper als auch der Goldene Schnitt werden mehr-
fach auftauchen sowie sogenannte endliche Zahlensysteme.

'sogenannte isolierte Singularitdten, die Fliche auf dem Bild unten hat 99 davon
— man sieht allerdings nicht alle, da die Abbildung nur einen kleinen Ausschnitt zeigt



1 Algebraische Flichen — Eine kurze Einfiihrung

In diesem Abschnitt erliutern wir detailliert, was algebraische Flachen sind
und wie wir einige einfache Flichen recht gut verstehen kénnen. Dazu be-
nétigen wir etwas Mathematik, insbesondere miissen wir mit Gleichungen
arbeiten, die durch Polynome gegeben sind, d.h. Gleichungen wie beispiels-
weise

m3+3xyz—i—y2—22 =0.

Die durch diese Gleichung definierte algebraische Fldche besteht aus all
jenen Punkten (z,y, z) des drei-dimensionalen Anschauungsraums, die beim
Einsetzen von x,y, z in die linke Seite der Gleichung 0 ergeben. Die Abbil-
dung[zeigt einige typische algebraische Flachen, manche davon glatt, andere
mit Spitzen (sogenannten Singularititen).
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Abbildung 1: Einige algebraische Flachen, manche glatt (die linken beiden),
andere mit vielen Spitzen, sogenannten Singularitidten (die rechten drei).

Doch ein Schritt nach dem anderen: zunéchst betrachten wir algebraische
Kurven, die man mit den Mitteln der Schulmathematik recht gut verstehen
kann. Darauf aufbauend werden wir uns dann mit den Flachen beschéftigen.

Wer sich hauptséchlich fiir die Geschichte und Geometrie der Weltrekord-
Flichen interessiert, kann versuchen, direkt zum entsprechenden Abschnitt
Bl zu springen, doch werden dort wir zumindest einige der Begriffe verwenden,
die hier erldutert werden.

1.1 Ebene algebraische Kurven

Algebraische Kurven kénnen wir iiber den Zugang von Funktions-Graphen
recht gut verstehen; doch bei weitem nicht alle algebraischen Kurven entste-
hen als Graph einer Funktion! Trotzdem beginnen wir zunéchst mit diesen
speziellen Kurven:

1.1.1 Graphen von Funktionen

Wir betrachten eine Zuordnung f der Form z — f(z), die jeder reellen
Zahl z eine eindeutige reelle Zahl f(x) zuweist; solche Zuordnungen heifen
Funktionen.



Beispiel 1. Finige einfache Beispiele von Funktionen:

o f: x— fx)=1x.

e g: z— g(x) =122

Veranschaulichen kénnen wir uns solche Funktionen mit Hilfe ihres Gra-
phen in einem Koordinatensystem, indem wir dort alle Punkte mit den
Koordinaten (z, f(z)) bzw. (z,g(x)) eintragen (Abb. B).
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Abbildung 2: Graphen von f: x — z, g: = > x°.

1.1.2 TImplizite Gleichungen

Schreibt man bei den Graphen fiir f(z) bzw. g(z) jeweils kurz y, so ergeben
sich die Gleichungen:

o f: y=u=u.
e g: y=uzx".
Der Graph von g besteht also aus all den Punkten (x,y), die die Gleichung

y = 22 erfiillen.

Schreiben wir dies um zu y — 2 = 0, so ist die Gleichung nicht mehr prakti-
scherweise nach y aufgelést. Eine solche nicht nach y aufgeloste Form heifst
implizite Gleichung. In diesem Fall ist das Auflésen der impliziten Glei-
chung nach y natiirlich ganz einfach, doch bei komplizierten Gleichungen
ist dies im Allgemeinen gar nicht mdglich! Hier ein weiteres Beispiel einer
impliziten Gleichung:

Frage 1. Wie sieht die Menge all jener Punkte aus, die die Gleichung k:
24y =1

erfillen?



Offenbar hat diese Gleichung fiir Punkte mit |z| > 1 oder |y| > 1 keine
Losung. Um k genauer zu verstehen, versuchen wir, die Gleichung nach y
aufzulésen, um analog zu oben einen Graph zu zeichnen:

y2 =1- 1’2,
dh. y = V1 —22 oder y = —v/1 — 22 (auch hier sieht man, dass |z| > 1
keine Losung liefert).

Die Gleichung k fithrt also nicht auf eine Funktion (bei der ja jedem z ein
eindeutiges y zugeordnet wird!).

Trotzdem konnen wir in ein Koordinatensystem alle Punkte einzeichnen, die
die geforderte Gleichung x2 + y? = 1 erfiillen, nimlich in zwei Teilen:

Beispielsweise liegt der Punkt P = (\/g, \/g) auf dem oberen Teil dieser

Kurve, denn setzen wir die z-Koordinate von P in /1 — 22 ein, so erhalten

WIT:
1’ 11
1—y/2 =y/1—2=—
\/g 2 V2

was tatséchlich die y-Koordinate von P ist.

Wir hétten dies auch direkt an der oben gegebenen Gleichung fiir k£ sehen
kénnen, indem wir die Koordinaten von P dort einsetzen:

RIS

1.1.3 Kreise und Ellipsen

Das Bild im vorigen Abschnitt sieht aus wie ein Kreis; und tatséchlich kénnen
wir beweisen, dass alle Punkte, die die Gleichung k: 22 + y? = 1 erfiillen,
einen Kreis mit Radius 1 beschreiben!

Ein Kreis ist ndmlich die Kurve der Punkte, die von einem gewahlten Mut-
telpunkt M den gleichen Abstand » > 0 haben. Und diese Eigenschaft haben



auch die Punkte auf k. Dies kann man folgendermafsen sehen: Nehmen wir
einen Punkt @ = (t,s) auf einem Kreis mit Radius 1 um den Ursprung
(0,0).

=

1 k: 22 +9%2=1

Der Satz des Pythagoras sagt, dass in einem rechtwinkligen Dreieck mit
Hypothenuse der Linge ¢ und Katheten der Lingen a, b gilt: a® + b* = 2.

Angewendet auf unseren Punkt @ = (¢, s) auf dem Kreis heifit dies: 2+ 52 =
1, da das Dreieck M PQ rechtwinklig ist und da die Lange der Strecke QM
gerade der Radius (also hier 1) des Kreises ist. @ erfiillt also die Gleichung
fiir k. Umgekehrt liegt jeder Punkt, der k: 22 +%? = 1 erfiillt, auf dem Kreis
um den Ursprung mit Radius 1.

Analog beschreibt 22 + 2 = r2 einen Kreis mit Radius r. Ersetzt man eine
der Koordinaten, z.B. z, durch ein Vielfaches, z.B. 2z, so veréndert sich die
Gleichung zu: E: 422 +y? = 1.

Frage 2. Wie sieht die Kurve der Punkte aus, die E erfiillen?

Dies ist eine in der 2-Richtung gestauchte Variante des Kreises, eine Ellipse:

4-(3)?+07=1

N[
o=

E: 422 +¢y% =1

1.2 Algebraische Flichen

Nach den ebenen algebraischen Kurven betrachten wir nun algebraische FI14-
chen. Wir beginnen mit denen, die den Kurven sehr stark dhneln, ndmlich
Zylinder. Erst dann kommen wir zu Kugeloberflichen und anderen Objekten.



1.2.1 Ein Zylinder

Auch Punkte im Raum konnen wir durch Koordinaten beschreiben (linkes
Bild in Abb. B):

1,32
(0,0,2) ¢~ .
(0,0,1)
(_170, 0) (170;0) z

Abbildung 3: Der Punkt (1, %, 2) in einem 3-dimensionalen Koordinatensy-
stem und ein Zylinder mit der Gleichung z? +4? = 1 (die vertikale Achse ist

die z-Achse).

Zeichnen wir jetzt alle Punkte (x,y,z) ein, die die bereits im vorigen Ab-
schnitt verwendete Kreisgleichung k: 22 + y? = 1 erfiillen, so fillt auf, dass
diese Gleichung nicht von z abhéngt! Daher gilt: (z,y) erfilllt k£ = (z,y, 2)
erfiillt & fiir jedes beliebige z.

Die Menge aller Punkte (x,%,2) im Raum, die die Gleichung 2% + y? — 1
erfiillen, besteht also aus lauter Kreisen (fiir jeden Wert z némlich einen,
rechtes Bild oben). Eine solche Fliche nennt man Zylinder.

Die pink eingezeichnete Ebene im Bild hat die Gleichung z = —1. Sie besteht
aus allen Punkten, deren z-Koordinate —1 ist, liegt also parallel zur z,y-
Ebene. Sie schneidet den Zylinder in einem Kreis.

1.2.2 Eine Kugeloberfliche (Sphire)

Betrachten wir jetzt Gleichungen, in denen auch die dritte Variable, z, vor-
kommt:

Frage 3. Wie sieht die Menge der Punkte im Raum aus, die die Gleichung
S: 22+ +22=1
erfillen?

Um dies zu verstehen, iiberlegen wir uns, wie beim Zylinder, wie die Schnitte
der Menge mit Ebenen aussehen, die parallel zur x,y-Ebene liegen:



Der Schnitt der Menge aller Punkte, die z = 0 erfiillen, mit jener Menge
aller Punkte, die 22 + y? + 22 = 1 erfiillen, besteht aus genau den Punkten,
die beide Gleichungen erfiillen. Wir kénnen also die Forderung z = 0 in die
zweite Gleichung einsetzen und erhalten: 2 4+4? = 1, einen Kreis mit Radius
1 (links in Abb. H):

Abbildung 4: Drei Ebenen-Schnitte der Sphire 22 + y% + 22 = 1.

Analog ergibt sich:

o |z| = %,:BQ-I-y?-I-% =1ler?4y?= (1—%), z = 1%, ein kleinerer

Kreis (mittleres Bild oben).

ozl =1,224+42+12=1 <= 22 +y? =0, z = 1. Diese Gleichung
erfiillt nur der Punkt (0,0,1).

o |zl >1, 22 +9y*+12 =1 < 22+ 9% <0, |2|] > 1. Dies hat keine
Losung, da 22 > 0, y? > 0 (rechtes Bild oben).

Analog zur Rechnung beim Kreis kann man mit Hilfe des Satzes von Pytha-
goras nachweisen, dass jeder Punkt der Fliche, die durch

a? +y?+ 2 =02

definiert wird, Abstand r vom Ursprung (0,0,0) des Koordinatensystems
hat, dass die Gleichung also eine Kugeloberfliche (auch Sphdre genannt)
mit Radius r beschreibt.

1.2.3 Ein Ellipsoid

Genau wie bei der Ellipse oben, kénnen wir nun die Gleichung der Sphére
leicht verédndern, indem wir in einer Koordinatenrichtung, z.B. z, mit einem
Faktor a > 0 strecken oder stauchen. Das liefert:

22+ 9% + (az2)? = 1.

Die Bilder in Abb. Bl zeigen die drei méglichen Fille a = % (gestreckt), a = 1
(Sphére), a = % (gestaucht), wobei auch der Schnitt mit y = 0 eingezeichnet

1st.



Abbildung 5: Drei verschiedene Ellipsoide.

1.2.4 Hyperboloid und Kegel

Ahnlich zur Kugel und zum Ellipsoiden sind Hyperboloiden. Im Vergleich
zur Sphére hat sich in der folgenden Formel nur ein Vorzeichen gedndert:

:v2+y2—22:r2.
Fiir feste Werte von z = a ergeben sich wieder Kreise (linkes Bild) mit
Gleichung z?+y? = r?+a?. Im Gegensatz dazu erhilt man mit festen Werten
von y = a nun aber sogenannte Hyperbeln (rechtes Bild) mit Gleichung

2?2 — 22 =r? —a?%

Frage 4. Was passiert nun, wenn wir den Wert fiir v immer kleiner wdhlen?
Fiir den Schnitt mit der Ebene z = 0 ergeben sich immer kleinere Kreise,

bis sie schlieklich fiir 7 = 0 zu einem Punkt mit Gleichung 2% + y? = 0
geschrumpft sind (linke beiden Bilder unten):

Fiir die Ebene y = 0 ergeben sich Hyperbeln, die sich immer mehr zwei Ge-
raden ann#hern, bis man schlieflich fiir » = 0 zwei sich schneidende Geraden
mit Gleichung (22 — 22) = 0 erhilt, da: 22 — 22 = (z + 2) - (x — 2).



1.2.5 Flichen von hoherem Grad

Bisher haben wir nur sehr spezielle algebraische Flachen betrachtet, ndmlich
solche, die sich als Nullstellen von Polynomen vom Grad 1 oder 2 ergeben.

Im Allgemeinen ist eine algebraische Fldche vom Grad d die Menge aller
Nullstellen eines Polynoms vom Grad d in drei Variablen:

alxd + agxdfly + agxdflz + a4xd*1 + a5xd*2y2 4+ - +ap =0,

wobei die a; gewisse Konstanten sind.

Beispiele von Fléchen von hoherem Grad lernen wir im folgenden Abschnitt
iiber Singularitédten kennen.

1.2.6 Flichen iiber reellen und komplexen Zahlen

Im vorigen Abschnitt haben wir nicht thematisiert, aus welchem Zahlenbe-
reich die Konstanten a; und die Werte, die wir fiir x,y, 2z einsetzen diirfen,
stammen. Stillschweigend werden die meisten Leser hier reelle Zahlen ange-
nommen haben. Hiufig ist es aber auch sinnvoll, algebraische Fliachen {iber
anderen Zahlensystemen zu betrachten, insbesondere iiber den komplezxen
Zahlen. Lassen wir nur reelle Zahlen zu, so ergibt sich ndmlich folgende
Schwierigkeit: Die Gleichung

224+ —a=0

hat fiir @ > 0 eine ganze Kurve von reellen Punkten (z,y) als Losungsmenge,
ndmlich einen Kreis mit Radius a; fiir a = 0 ergibt sich als einzige reelle
Loésung der Punkt (0,0) und fiir a < 0 existiert gar keine reelle Losung.

Wir kénnen hier nicht detailliert komplexe Zahlen vorstellen, sondern be-
trachten nur das obige Beispiel etwas genauer. Wir erweitern die bekannte
Menge der reellen Zahlen, indem wir auch Zahlen der Form a+ib (sogenannte
komplexe Zahlen, die kurz als C notiert) zulassen, wobei ¢ die imagindre
Einheit ist, d.h. eine Zahl, fiir die gilt: 2 = —1. Offenbar kann ¢ keine reelle
Zahl sein, da ja Quadrate reeller Zahlen immer nicht negativ sind. Man kann
zeigen, dass man mit Hilfe von Zahlen der Form a + ¢b nicht nur die iiber
den reellen Zahlen nicht 16sbare Gleichung 2 = —1 l6sen kann, sondern



dass man sogar fiir jedes Polynom vom Grad d > 1 in einer Variablen eine
Nullstelle der Form a + b findet! Beispielsweise sind die komplexen Zahlen
1+14v/3 und 1 —iv/3 Losungen der Gleichung 22 — 2z + 4 = 0, da:

(xz—A+iV3)(z—(1-iV3) = (z—1—iV3)(z—1+1iV3)
= (z—1)* = (iV3)’
— 2?2 41-i%. V3
= 2> —2r+1—(-1)-3
= 2% -2z +4.

Dies fiihrt dazu, dass auch die Gleichung z? 4+ y? = —1 iiber den komplexen
Zahlen Losungen hat; beispielsweise liegen die Punkte (0,=+i), (£4,0) auf
diesem Kreis. Obwohl es sich vermutlich auf den ersten Blick nicht so anhért,
vereinfacht sich durch Hinzunahme auch komplexer Losungen das Studium
algebraischer Kurven und Flichen in vielerlei Hinsicht sehr, da man nicht
immer die Fille unterscheiden muss es gibt ,keine Ldsung®, ,endlich viele
Losungen oder ,unendlich viele Losungen®: iiber den komplexen Zahlen hat
der ,Kreis“ mit Gleichung x2+y%+4a = 0 fiir jedes a unendlich viele Losungen
— und Analoges gilt auch fiir algebraische Flichen.

1.3 Singularitéiten

Singularitdten heifien ganz spezielle Punkte algebraischer Kurven und FI&-
chen. Um diese allmihlich kennen zu lernen, beginnen wir mit der einfachsten
Singularitit, einem sogenannten gewohnlichen Doppelpunkt, bevor wir dann
etwas kompliziertere Punkte betrachten.

1.3.1 Ein gewsGhnlicher Doppelpunkt
Der spitze Punkt (der Ursprung (0,0,0)) des Kegels mit Gleichung
? +y*— 22 =0,

den wir oben gesehen haben (s. auch Abb.[), ist eine sogenannte Singulari-
tat. Auch algebraisch sind Singularitdten durch eine besondere Eigenschaft
ausgezeichnet: Fassen wir das Polynom k = 22 +y? — 22 jeweils als ein Poly-
nom in einer Variablen auf, in dem die anderen Variablen Konstanten sind,
so konnen wir jeweils die Ableitung des Polynoms nach dieser Variablen
bilden. Ist beispielsweise = die Variable und sehen wir y, z als Konstanten
an, so ist die Ableitung 2z, da die Ableitung einer Konstante 0 ergibt. Man

schreibt dies kurz:
—ak( ) =2
T,Y,z) =2
ax ’y’
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Abbildung 6: Ein Doppelkegel mit einer Singularitit in (0,0,0), die gewohn-
licher Doppelpunkt genannt wird.

und nennt diesen Ausdruck die partielle Ableitung von k nach x. Analog
findet man fiir die partiellen Ableitungen nach y bzw. z:

ok ok
e = 2 e pr —2 .
ay (z,y,2) = 2y, o (z,y,2) z

Der einzige Punkt P = (P, Py, P,), fiir den sowohl k(P,, Py, P;) = 0 und
auch alle diese partiellen Ableitungen 0 werden, ist hier offenbar der Punkt
O = (0,0,0), der Ursprung, weil 2z = 0 genau dann gilt, wenn 2 = 0 und
entsprechend fiir y und z.

Ein Punkt P = (P,, P,, P,) einer algebraischen Fliche mit Gleichung f(z,y, z) =
0 heift daher Singularitdt, wenn sowohl gilt

f(PIaPyaPZ):O

als auch:

of _of _of _
81:(P13Pyapz)_ ay(PI7Py7Pz)_ aZ(PwaPyaPz)_O

Singularitdten konnen sehr unterschiedlich aussehen und haben sehr viele
Verbindungen zu anderen Gebieten der Mathematik, aber auch zur Physik
und der belebten und unbelebten Natur.

Die Singularitéit des oben gezeigten Kegels ist die einfachste Singularitéit und
wird gewohnlicher Doppelpunkt genannt. Sie ist ausgezeichnet unter allen
Singularitdten durch die Eigenschaft, dass die sogenannte Determinante der
Hessematrix, kurz: det Hy, in diesem Punkt nicht verschindet. Die Gleichung
det H; erhélt man aus jener von f durch Bilden einiger zweiter partieller
Ableitungen, also partieller Ableitungen der partiellen Ableitungen, ndmlich:

2f  o0%f  °f

02z oxdy  Ozdz

— o*f  9*f  9*f

det Hf -— det 8y8l‘ 8Ty 8y8z 5
9% f 9%f 92f
0z0x 020y 02z
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wobei die sogenannte Determinante, kurz: det, folgendermafsen berechnet
wird:

ail a2 a3
det [ ao1 aze a3 = 011022033 + 12023031 + 013021032
asy asy ass
—a13a22031 — (11023032 — A12021033.

Leicht lisst sich fiir f = 22 4+ y? — 22 nachrechnen:

2 00
det H;(0,0,0) =det [0 2 0] =80,
00 2

d.h. f hat einen gewohnlichen Doppelpunkt in (0,0, 0).

1.3.2 Aj Singularititen

Durch kleine Verinderungen an der Gleichung 22 + 32 — 22 = 0 des Kegels
konnen wir bereits sehr unterschiedliche Singularitdten erhalten.

Betrachten wir zunéchst die Gleichung
AT (z,y,2) =23 +y* — 22 =0.

Offenbar ist hier der Punkt (0,0,0) auch eine Singularitit von A;_, da
nimlich Einsetzen in die Gleichung und in die partiellen Ableitungen 322,
2y, —2z, jeweils 0 ergibt (linkes Bild):

o ¥ € W

Allerdings ist der Punkt (0,0,0) kein gewohnlicher Doppelpunkt, weil die
Determinanten der Hessematrix dort verschwindet:

6-0 0 O
det HA;_(O,O, 0)=det{ 0 2 0] =0.
0 0 2

Versuchen wir wieder, die Geometrie dieser Flache etwas zu verstehen, indem
wir sie mit verschiedenen Ebenen schneiden. Der Schnitt mit Ebenen x = a
ergibt a3 + 32 — 22 = 0, also finden wir fiir @ # 0 Hyperbeln und fiir ¢ = 0
zwei Geraden (rechte drei Bilder oben).
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Interessant wird es nun fiir Schnitte mit y = a. Fiir a = 0 finden wir ndmlich
eine Kurve mit einer Spitze, die Cuspe genannt wird (linkes Bild unten), mit
Gleichung 23 — 22 = 0. Mit einem Taschenrechner oder einem Computeralge-
braprogramm ist es nicht schwer, diese ebene Kurve zu zeichnen, indem man
einige Werte berechnet: Da ja aus 23 — 22 = 0 folgt, dass z = ++/23, kann
man hier einfach verschiedene positive Werte von z und 0 einsetzen und er-
hélt die zugehorigen z-Koordinaten. ZB.: 2 =0=2=0, z =1=2z = %1,
r = 4=z = +8. Diese Kurve ist in der Mitte zu sehen:

Allgemeiner bezeichnet man die Singularitit der Flichen mit den Gleichun-
gen
A @y, z) =" 1y = 2% kEN,

als A;r* Singularitdten. Fiir £ = 1 finden wir den Kegel, der einen gewohn-
lichen Doppelpunkt als Singularitét in (0,0,0) hat und den wir weiter oben
bereits betrachtet haben; fiir k& = 2 ergibt sich die Cuspe, fiir hoheres k&
erhalten wir weitere Singularititen, die keine gewGhnlichen Doppelpunkte
sind und bei denen die Spitze ,immer spitzer* wird — einfach mal in SUR-

FER [Mey05] oder sURFEX [HLMO05] ausprobieren!

2 Weltrekord-Flachen

Wir beschreiben nun einige der aktuellen Weltrekord-Fliachen auf dem Gebiet
der Flichen mit vielen Singularitéten, sowie deren oft faszinierende Geschich-
te und Geometrie. Wir beginnen mit den einfachsten Fillen vom Grad 1 und
2, auch wenn hier die Geometrie der Fldchen, die mit den Singularitdten
zusammenhéngt, nicht so interessant ist wie bei den Flichen von héherem
Grad. Ab Grad 3 und 4 werden wir dann auch Zusammenhinge zu anderen
Bereichen der Geometrie kennen lernen, wie beispielsweise den platonischen
Korpern und dem Goldenen Schnitt.

Wie schon in der Zusammenfassung angedeutet, kann man in manchen Fail-
len sogar zeigen, dass die aktuellen Weltrekorde nie mehr verbessert werden
kénnen. Dies ist derzeit fir d = 1,2,...,6 der Fall. Nur ab Grad d = 7
ist also noch unklar, ob der aktuelle Weltrekord, 99, auch der bestmogliche
ist. Die folgende Tabelle gibt einen Uberblick fiir manche d; wie schon in
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der Zusammenfassung erwiahnt bezeichnet dabei p(d) die maximal mdgliche
Anzahl von Singularitidten auf einer Fliche vom Grad d:

dl|1 23 4 5 6 17 8| d
~ 5

pd)>10 1 4 16 31 65 99 168 |~ 3d®
~ 433

pd)< |0 1 4 16 31 65 104 174 | ~3d

Zu dieser Tabelle miissen wir noch bemerken, dass p(d) genauer gesagt die
maximal mdogliche Anzahl komplexer Singularitdten einer algebraischen
Flédche, deren definierendes Polynom auch kopmlexe Koeffizienten haben darf
(siehe Abschnitt [L2ZH]), bezeichnet. Da aber derzeit in keinem der aufgefiihr-
ten Fille eine bessere obere oder untere Schranke fiir eine reelle Variante
ur(d) von p(d) bekannt ist, gehen wir hier nicht weiter auf die Unterschei-
dung zwischen ur(d) und p(d) ein. Insbesondere haben alle Fléchen, die die
in der Tabelle angegebenen unteren Schranken realisieren, ausschliefslich re-
elle Singularitdten, so dass es uns recht leicht moglich ist, diese Flichen zu
visualisieren!

Eine wesentlich ausfiihrlichere und mathematisch fundiertere Darstellung des
Themas Flachen mit vielen Singularitdten liefert die Dissertation des Autors
[Lab03]. Hier versuchen wir, die Besonderheiten der jeweiligen Mathematik
und Geometrie der Konstruktionen noch anschaulicher und detaillierter als
in den angegebenen Arbeiten zu erldutern.

2.1 Ebenen

Die Geometrie einer Ebene (Fliachen vom Grad 1) ist nicht besonders fas-
zinierend. Trotzdem gehen wir hier auf diese einfachsten Flichen detailliert
ein, da man an diesem Beispiel auf sehr elementare Weise nachrechnen kann,
dass diese Fldchen gar keine Singularitdten haben konnen.

Beginnen wir mit der Gleichung einer Ebene:
E: ar+by+cz+d=0,

wobei a, b, ¢, d fiir jede Ebene gewisse feste Werte annehmen. Im ersten Ab-
schnitt haben wir gesehen, dass eine Singularitdt einer Fliache ein Punkt
ist, in dem sowohl die Flichengleichung als auch deren partielle Ableitungen
erfiillt sind. Berechnen wir die letzteren, so ergibt sich:

0E _ OB _, OB _

R TR

Damit alle gleichzeitig verschwinden, muss sowohl @ = 0, als auch b = 0
und ¢ = 0 gelten. Soll die Ebene E also eine Singularitit besitzen, so hat
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sie die Form: d = 0. Eine solche Ebene hat aber nur dann Punkte, wenn
die Konstante d eben gerade 0 ist. Dann ist die verbleibende Gleichung der
Ebene aber 0 = 0, was gar keine Bedingung an die Variablen x, y, z darstellt
und daher den ganzen Raum beschreibt und nicht etwa eine Ebene. Wir
haben also gerade bewiesen, dass eine Ebene keine Singularitdt haben kann:

Satz 1. FEine Ebene hat keine Singularitat, insbesondere: u(1) = 0.

2.2 Quadriken

Flachen vom Grad 2 heifken Quadriken. Schon fiir diese ist es nicht mehr
so einfach, elementar nachzurechnen, wie viele Singularitéten sie haben kon-
nen, obwohl schon die Griechen vor iiber 2000 Jahren die meisten ihrer Ei-
genschaften bereits verstanden. Fiir eine sehr anschauliche Darstellung von
wesentlich mehr Eigenschaften als wir hier darstellen konnen, siehe [HCV32].

Heutzutage lernt man Quadriken als Mathematik-Student iiblicherweise in
der sogenannten linearen Algebra kennen: Das nahezu vollsténdige Versténd-
nis der Quadriken bildet einen der Héhepunkte des ersten Studienjahres. Wir
geben hier nur das dort bewiesene Ergebnis an:

Satz 2 (Klassifikation der Quadriken). Durch Drehung und/oder Verschie-
bung lisst sich jede Quadrik im R® in eine der folgenden drei Formen tber-
fiihren:

1. Fall: az? 4 by? 4+ c2? =0,
2. Fall: az® +by?> +c2> —1=0,

3. Fall: ax? +by? — 2 =0,

wobei a,b,c,d € R gewisse Konstanten sind. Erlaubt man auch Stauchungen
und Streckungen, so kann man erreichen, dass a,b,c,d € {—1,0,1}.

Die wichtigsten Fille dieser Klassifikation sind in Abbildung [d zu sehen.
In den meisten Fillen kann man die Geometrie der Fldchen ausgehend von
deren Gleichung recht gut verstehen. Beispielsweise, indem man eine der
drei Variablen auf einen festen Wert setzt; dies gibt dann eine ebene Kurve
vom Grad zwei, also entweder eine Ellipse, eine Hyperbel, eine Parabel, zwei
Geraden u.d. — einfach einmal versuchen!

Anhand der Bilder zur Klassifikation kann man schon erahnen, dass eine
Quadrik héchstens eine isolierte Singularitdt haben kann, doch wir kénnen
dies auch mit Hilfe des obigen Klassifikationssatzes recht leicht nachweisen:
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A

Sphére (Kugeloberfliche) Ellipsoid Einschaliger Hyperboloid
(2. Fall: a,b,c=1) (2. Fall: a,b,c > 0) (2. Fall: a,¢ >0, b < 0)

(Elliptischer) Zylinder Hyperbolischer Zylinder Zweischaliger Hyperboloid
(2. Fall: a,b> 0, ¢c=0) (2. Fall: a > 0,b< 0, c=0) (2. Fall: a > 0, b,¢c < 0)

M

Elliptischer Paraboloid Hyperbolischer Paraboloid Zwei Ebenen
(3. Fall: a,b > 0) (3. Fall: a > 0,b < 0) (1. Fall: a >0,b<0,¢c=0)
Q
9 ‘
Doppelkegel Ein Punkt Eine Geraden
(1. Fall, a,b > 0,¢ < 0) (1. Fall, a,b,c > 0) (1. Fall, a,b > 0, ¢ =0)

Abbildung 7: Die Klassifikation der Quadriken.



Satz 3. Fine Quadrik hat hochstens eine isolierte Singularitdt. Diese ist
dann ein gewdhnlicher Doppelpunkt. Insbesondere:

w(2) = 1.

Beweis: Wegen des Satzes B zur Klassifikation der Quadriken miissen wir
uns nur die drei dort angegebenen Félle anschauen, jeweils die partiellen
Ableitungen berechnen und dann die moglichen Singularitdten bestimmen.
Wir betrachten hier nur die Fille des Satzes Pl mit a,b,c # 0:

1. Fall: Im ersten Fall sind die partiellen Ableitungen 2ax,2by,2cz. Fiir
a,b,c # 0 kénnen diese nur dann gleichzeitig null sein, wenn z = y =
z = 0. Der Punkt (0,0,0) ist tatséchlich ein Punkt der Quadrik, da
a-0%2+b-02+c-0% = 0 und daher die einzige Singularitit der Quadrik.
Wie wir oben gesehen haben ist diese ein gewthnlicher Doppelpunkt.

2. Fall: Auch im zweiten Fall sind die partiellen Ableitungen 2ax, 2by, 2cz.
Fiir a, b, ¢ # 0 konnen diese wieder nur dann gleichzeitig null sein, wenn
x =y = z = 0. Der Punkt (0,0,0) ist aber kein Punkt der Quadrik,
daa-024+b-024c-0%=0# 1. In diesem Fall hat die Quadrik also
keine Singularitit.

3. Fall: Im letzten Fall sind die partiellen Ableitungen 2ax,2by,—1. Die
partielle Ableitung nach z ist konstant —1 und kann also nie 0 werden,
so dass diese Quadriken auch keine Singularitét haben konnen.

Insgesamt kann also nur im 1. Fall eine Singularitét auftreten. O

2.3 Kubische Flachen und Platonische Korper

Fiir Ebenen konnten wir noch recht leicht per Hand nachrechnen, dass die-
se Flichen keine Singularitdten haben konnen. Fiir Quadriken mussten wir
schon ein Resultat aus dem ersten Studiensemester zu Rate ziehen, um nach-
zuweisen, dass diese Flichen hochstens eine Singularitdt haben kdnnen.

Fiir Kubiken (also Flichen, die durch ein Polynom vom Grad 3 beschrieben
werden) ist die Situation nach komplizierter. Um hier die Frage nach der
moglichen Anzahl von Singularititen beantworten zu kénnen, miissen wir
schon auf ein Resultat, das man erst in einer Spezialvorlesung zur algebrai-
schen Geometrie bespricht, zuriickgreifen — das allerdings die Mathematiker
des 19. Jahrhunderts auch bereits kannten.
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2.3.1 Zur Geschichte der kubischen Flichen

Die ersten interessanten Resultate zu kubischen Flichen fanden die beiden
Briten George Salmon und Arthur Cayley 1849 in einem Briefwechsel her-
aus: Auf jeder kubischen Fléiche, die keine Singularitéten hat, liegen genau
27 Geraden (links in der Abbildung unten) — und wenn man die Flichen
so verdndert, dass Singularititen auftreten, so fallen manche der Geraden
iibereinander (rechtes Bild).

Die Clebsch—Kubik hat keine Die Cayley—Kubik hat 4 Singularitdten
Singularitdt und 27 Geraden. und nur 9 verschiedene Geraden.

Dies mag auf den ersten Blick sehr erstaunlich erscheinen, da kubische FIa-
chen doch sehr geschwungen und gar nicht gerade erscheinen, doch man kann
dies tatséchlich beweisen; unter der Annahme, dass wenigstens eine Gerade
auf einer solchen Fliche liegt, ist es sogar nicht sehr schwer, die tatséchliche
Anzahl zu bestimmen.

Beeindruckend ist, dass kubische Fldchen immer noch Objekt der Forschung
sind, obwohl man schon so vieles {iber sie weif}; das liegt zum grofsen Teil
daran, dass man kleine Ausschnitte der kubischen Flachen heutzutage dazu
benutzt, um noch kompliziertere Objekte anzundhern. Dies wird beispiels-
weise im Bereich des Computer Aided Design eingesetzt, da kubische Flichen
némlich viele weitere praktische Eigenschaften besitzen, wie z.B. die Tatsa-
che, dass sie parametrisierbar sind. Dies kénnen wir hier leider nicht vertiefen,
wir mdchten nur im néichsten Abschnitt ein kleines Detail dieser sehr umfas-
senden Theorie der kubischen Flachen beleuchten, ndmlich die Frage nach
der maximalen Anzahl von Singularititen auf ihnen. Die Webseite [LyS00]
gibt einen umfassenden Uberblick iiber alle moglichen Gestalten kubischer

Fliachen, s. auch [HLO6].

2.3.2 Eine obere Schranke fiir p(d)

Schon im 19. Jahrhundert haben Mathematiker gegebenen algebraischen FI&-
chen andere algebraischen Flachen zugeordnet, die in besonderer Beziehung
zu ihnen stehen. Eine solche zugeordnete Fliche ist die sogenannte duale
Fldache. Diese hat sehr viel mit der urspriinglichen Flidche zu tun; insbeson-
dere ist ndmlich die duale Flache der dualen Fliche wieder die urspriingliche
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Fléache! Zwar kéonnen wir das Konzept der dualen Flache hier nicht erlautern,
doch wir kénnen zumindest eine Formel fiir deren Grad anwenden lernen: Ist
der Grad d einer gegebenen algebraischen Fldche f wenigstens d > 3 und
bezeichnen wir den Grad der dualen Fliche von f mit d*, so gilt:

d*(f) < d(d—1)* = 2u(f),

wobei u(f) die Anzahl der isolierten Singularitdten von f ist. Da bekannt
ist, dass duale Fldchen von Quadriken wieder Quadriken sind, gilt d*(f) > 3,
falls d > 3. Setzen wir dies in die obige Ungleichung ein, so erhalten wir nach
Umstellen die folgende obere Schranke fiir die Anzahl p(f) von Singularitéten
auf f und da f beliebig vom Grad d war auch eine obere Schranke fiir p(d):

Satz 4 (19. Jahrhundert, vielleicht von G. Salmon). Fir die mazimal mdg-
liche Anzahl p(d) von Singularititen auf einer Fldche vom Grad d > 3 gilt:

1

d) < = (d(d—1)*-3).
pld) < 5 (d(d = 1)* - 3)
Setzen wir in diese Formel einige Werte fiir d > 3 ein, so erhalten wir bei-
spielsweise: ©(3) < 4, p(4) < 16, u(5) < 34. Wir werden spéter sehen, dass
tatsdchlich p(4) = 16 gilt, dass aber die wahre Schranke im Grad 5 niedriger
als 34 liegt. Doch nun zunéchst zuriick zum Grad 3.

2.3.3 Die Cayley—Kubik mit vier Singularititen

Wir haben eben gesehen, dass eine kubische Fliche hochstens vier Singu-
laritdten haben kann, doch gibt es wirklich eine Fliche, die diese Schranke
erreicht? Ja, es gibt sie tatséchlich; zu Ehren eines Mathematikers, der viel
iiber kubische Flachen gearbeitet hat, wird sie heute oft Cayley—Kubik ge-
nannt, obwohl der Schweizer Ludwig Schlafli 1863 der erste war, der kubische
Flachen detailliert auf deren Singularititen untersucht hat.

Eine besonders symmetrische Gleichung einer kubischen Fldche mit der ma-
ximal moglichen Anzahl von p(3) = 4 Singularitéten erhdlt man z.B., indem
man in der Gleichung % + i + % + % = 0 mit dem Hauptnenner durchmul-
tipliziert und w =1 —z — y — z setzt:

Cay: yzw+zzw+ayw +zyz=0, w=1—x—y— 2.

Eine gute Ubungsaufgabe fiir den Leser ist es, nachzupriifen, dass diese FIi-
che tatséchlich wie behauptet genau vier Singularitdten hat. Dies sind {ibri-
gens die vier Punkte (0,0,0), (0,0,1), (0,1,0) und (1,0,0). Das liefert:

i

Satz 5 (Mitte des 19. Jahrhunderts). Eine kubische Fldche kann mazimal
vier Singularitaten besitzen:

u(3) =4
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2.3.4 Die Cayley—Kubik und Tetraeder-Symmetrie

Nicht erstaunen sollte hierbei, dass man nach Vertauschen der Koordinaten
eines dieser Punkte wiederum eine der Singularitéten erhilt — schlieflich
bleibt beim Vertauschen von z,y,z in der Gleichung der Fliche Cay die
Gleichung vollstindig erhalten. Man sagt in einem solchen Fall, dass die
Gleichung znwvariant unter den Vertauschungen ist. Betrachten wir diese
Vertauschungen etwas genauer; es sind folgende fiinf:

o 0 o d: n:
xT = Yy T = Yy T = Z X = Z T = X
y = Yy =z Yy =y Yy /= y = z
Z =z oz = X Z = T Z =Yy Z =y

Zéhlen wir die ,Vertauschung” ¢, die gar keine Vertauschungen vornimmt, die
also x auf z, y auf y und z auf z abbildet, hinzu, so haben wir insgesamt 6
Vertauschungen. Dies ist kein Zufall, da man leicht nachweisen kann, dass es
tatsichlich genau n! =n(n —1)(n — 2)--- 1 Vertauschungen von n verschie-
denen Buchstaben gibt: Fiir den ersten der Buchstaben hat man nadmlich n
mogliche Bild-Buchstaben zur Auswahl, fiir den néichsten noch n — 1, dann
noch n — 2 usw.

Vertauschungen haben den Vorteil, dass man zwei beliebige Vertauschungen
a und [ einer gewissen Menge von Buchstaben auch hintereinander ausfiih-
ren kann (geschrieben: Boq, gesprochen: « nach 3) und insgesamt wiederum
eine Vertauschung erhilt. Aufferdem kann man offenbar jede Vertauschung
« wieder riickgingig machen mit der sogenannten dazu inversen Vertau-
schung a~'. Schlieflich gilt noch (o 3) oy = a0 (B 0~) fiir drei beliebige
Vertauschungen. Eine Menge mit all diesen Eigenschaften heifst Gruppe; die
Vertauschungen einer festen Menge von n verschiedenen Buchstaben bilden
demnach eine Gruppe und zwar die sogenannte symmmetrische Gruppe
auf n Buchstaben, kurz bezeichnet mit S,.

Am obigen Beispiel der Gruppe der Vertauschungen, unter denen die Glei-
chung der Fliche Cay invariant bleibt, konnen wir dies alles sehr konkret
verstehen: Wenden wir zundchst a auf die drei Variablen (z,y,z) an, so
tauschen x und y ihren Platz, (y,x, z); wenden wir nochmals « an, so sind
wir wieder bei der urspriinglichen Reihenfolge angekommen: (x,y,z), d.h.
a = a~! in diesem Fall. Das gilt fiir 3 nicht, denn B(x,v,2) = (y, 2, ) und
By, z,x) = (z,z,y); schlieRlich gibt aber 3(z,z,y) = (z,v, 2), d.h. dreifaches
Anwenden von (3 ist nicht zu unterscheiden vom Nichtstun, also SoBo 3 = .
Man kann leicht {iberpriifen, dass wir durch mehrfaches Hintereinanderaus-
fiihren von e und g tatséchlich alle sechs Vertauschungen «, . .., 7, ¢ erhalten.
Man sagt dann, dass a und G die Gruppe erzeugen.

Ersetzen wir nun in der obigen Gleichung von Cay die x, y, z, w durch gewisse
Ebenen Z, g, Z, %, so kann man sogar erreichen, dass die Gleichung Cay inva-

20



riant unter beliebigen Vertauschungen der vier ,Buchstaben“ z, ¢, Z, w bleibt,
némlich, wenn Z, 9, Z, w die vier Seitenflichen eines regelméfigen Tetraeders

beschreiben.

"%

Abbildung 8: Ein regelméifiger Tetraeder und die tetraeder-symmetrische
Version der Cayley—Kubik.

Diese bilden dann insgesamt eine Gruppe von 4! = 24 Vertauschungen, un-
ter denen Cay invariant bleibt. Betrachten Sie die resultierende tetraeder—
symmetrische Flidche doch gleich mal in SURFER oder SURFEX [HLM05]
(s. auch Abb. ), indem Sie wihlen:

F=1—2—-V2 g=1—2+4+V2z, 2=14+2+V2y, 0=1+2—2y.

Natiirlich kénnen Sie auch hier die Koordinaten der Singularitéten leicht
berechnen, auch wenn die Rechnungen vielleicht etwas langwierig werden.
Wegen der gewdhlten Tetraeder—-Symmetrie sollten sich dabe gerade die 4
Ecken des Tetraeders mit den Seitenflichen z, ¢, Z, W ergeben.

Die weiteren Platonischen Korper lassen sich bei kubischen Flachen nicht
auf dhnliche Weise zur Konstruktion einsetzen. Da einige dieser seit mehr
als 2000 Jahren Mathematiker faszinierende Kdrper aber spéter auftauchen
werden, geben wir kurz eine Ubersicht in Abb. @l Die Platonischen Korper
haben noch viel tiefer liegende Beziehungen zu Singularitdten, auf die wir
hier leider nicht eingehen konnen; siehe dazu beispielsweise [Gre92).

A Q@

Tetraeder Wiirfel Oktoeder Dodekaeder Tkosaeder

Abbildung 9: Die Platonischen Kérper.
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2.4 Kummer—Quartiken und nochmals Tetraeder

Bereits ein Jahr nachdem Ludwig Schléfli 1863 die kubischen Flichen bzgl.
ihrer Singularitéten klassifiziert hatte, ermittelte Eduard Kummmer die ma-
ximal mogliche Anzahl p(4) von Singularitdten auf Flachen vom Grad 4
(sogenannten Quartiken). Wie wir in Satz Bl gesehen haben, gilt némlich:
1(4) < 16. Kummer bemerkte zunéchst einmal, dass die sogenannte Fresnel-
sche Wellenfliche tatsédchlich 16 Singularitdten besitzt, dass also gilt:

Satz 6 (E. Kummer, 1864). Eine Quartik kann mazimal 16 Singularititen
besitzen:
w(4) = 16.

Doch damit liet er es nicht bewenden; vielmehr studierte er sehr detailliert
Quartiken, die diese maximale Anzahl von 16 Singularitéten haben. Er gab
auch eine sehr schone tetraeder—symmetrische Familie von Gleichungen sol-
cher Fliachen an:

3u? —1
3—pu?’

Ku, := (x2+y2+22—,u2)2—)\i”g]2ﬁ), A= u e R,

Kubiken verwendeten Seitenflichen eines regelméafigen Tetraeders sind und
w eine reelle Zahl ist (fiir Abb. [ wurde p = 1.3 gewihlt).

Abbildung 10: Eine Kummer—Quartik mit 16 gewohnlichen Doppelpunkten.

Ein hervorragendes Buch iiber diese heutzutage nach Kummer benannten
Quartiken mit der maximalen Anzahl von Singularitéten ist [Hud90]. An
der Tatsache, dass ganze Biicher iiber diese Flichen geschrieben wurden,
sieht man, dass wir hier noch wesentlich mehr iiber sie sagen konnten; aus
Platzmangel miissen wir aber leider auf die angegebene Literatur verweisen.
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2.5 Togliatti—Quintiken, 5—Ecke und der Goldene Schnitt

Der Italiener Eugenio Giuseppe Togliatti bewies bereits im Jahr 1937, dass
es eine Flache vom Grad 5 (daher der Name Quintik) mit genau 31 Singula-
ritdten gibt — damals Weltrekord!

Da die obere Schranke in Satz Bl wie schon erwihnt nur beweist, dass es nicht
mehr als 34 Singularitéten auf einer Quintik geben kann und da auch in der
Folgezeit zunéchst niemand eine wesentlich bessere obere Schranke finden
konnte, suchten Geometer jahrzehnte lang nach einer Fliche vom Grad 5
mit wenigstens 32 Singularititen, bis schlieflich 1980 der Franzose Arneau
Beauville durch eine interessante Beziehung zur Codierungstheorie zeigen
konnte, dass eine Quintik nicht mehr als 31 Singularititen besitzen kann.
Das heifst also, dass Togliattis Weltrekord niemals mehr verbessert werden
kann! Es gilt also:

Satz 7 (E.G. Togliatti 1937, A. Beauville 1980). Eine Quintik kann mazimal
31 Singularitdten besitzen:
w(b) = 31.

Ungliicklicherweise ist Togliattis Konstruktion nicht so leicht zu visualisieren,
so dass wir fiir unsere Abbildung [l auf eine Konstruktion von Wolf Barth
aus den 1990igern einer Fliche zuriickgreifen, die ebenfalls 31 gew6hnliche
Doppelpunkte liefert: Ahnlich zur Konstruktion der tetraeder-symmetrischen

Abbildung 11: Barths Togliatti-Quintik mit 31 gew6hnlichen Doppelpunk-
ten.

Cayley—Kubik mag es natiirlich erscheinen, einen Platonischen Kérper auch
hier zu verwenden. Da es aber keinen Platonischen Kérper gibt, der entweder
genau fiinf Seitenflichen oder genau fiinf Symmetrieebenen hat, ist nicht
so klar, wie man so eine Fliche vom Grad 5 auf diese Weise konstruieren
konnte. Daher besitzt die abgebildete Quintik mit 31 Singularitéten weniger
Symmetrie, ndmlich die Symmetrie eines ebenen Fiinfecks, d.h. unter allen
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Spiegelungen in der z,y—Ebene, die ein regelméfiges ebenes Fiinfeck fest
lassen, bleibt auch Barths Togliatti—-Quintik fest. Anhand von Abb. 2 kann
man sich leicht iiberlegen, dass die Gruppe aller Vertauschungen der Punkte
der Ebene, die das Fiinfeck festlassen, genau aus 10 Vertauschungen besteht,
namlich fiinf Drehungen (wobei wir die Drehung um 0° mitzidhlen) sowie fiinf

Spiegelungen.

/s
h

N

Abbildung 12: Spiegelungen und Drehungen, die ein regelméfiges Fiinfeck
fest lassen: «v ist die Spiegelung an der Geraden g, 8 jene an h und - ist die
Drehung um den Ursprung um den Winkel é - 360°.

Die Gleichung der oben abgebildeten Quintik ist nicht einfach zu finden;
Barth startete mit einer Familie von Gleichungen, die von drei Parametern
a, b, d abhingt, ndmlich:

Bargq = P — az-Q?,

wobei P ein Polynom vom Grad 5 und @ eine gewisse Quadrik ist, und zwar:

P = H?:o (cos(%j)x—i—sin(%j)y— 1)
= 45 (o® — 52t 105%? — 10222 + 200
F5ayt — 5yt + 20y — 16),
Q = 2+ y>+b22+z2+d.

Durch geometrische und algebraische Argumente fand Barth schliefslich Wer-
te fiir a, b, d, die tatséchlich eine Fldche mit 31 gew6hnlichen Doppelpunkten

5 5-5
= —— = — - — 1 .
a 35" b 50 d (1+V5)
Nr. 23 auf der Webseite [BL06] (www.Calendar.AlgebraicSurface.net|) zeigt
einen Film, bei dem einige Werte fiir a und b durchlaufen werden, bis schlief-

lich jene Werte erreicht werden, fiir die sich die 31 Singularitdten ergeben.

liefern:

Die Zahl d taucht hier nicht zufillig auf; vielmehr hat sie sehr viel mit dem
sogenannten Goldenen Schnitt zu tun: Eine Teilung im Goldenen Schnitt
liegt vor, wenn sich die grofsere Teilstrecke zur ganzen Strecke verhilt, wie
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—_—— v
11—z T

Abbildung 13: Der Goldene Schnitt x erfiillt: 7 = 1_Tx

die kleinere Teilstrecke zur groferen. Ist die Lénge der ganzen Strecke 1, so
ergibt sich (s. auch Abb. [[3)):

1—=x

x

1
= 0 :;ﬂ+x—1:@+%u+vﬁxx+21—wm

2
11
— ——¢—5}.
r € { 5 2\/_

Da die Lénge x einer Strecke nicht negativ sein kann, finden wir als eindeutige

Losung: z = —%%—%ﬁ. Bemerkenswert an dieser Zahl ist beispielsweise auch,
dass

1

—=xz+1,

x

wie sich unmittelbar aus der definierenden Gleichung ergibt. Geometrisch
taucht der Goldene Schnitt bei Fiinfecken auf, so dass es nicht verwundert,
dass der Parameter d, den Barth fand auch damit zusammen hingt: Man
kann n&mlich recht leicht nachweisen, dass sich die Diagonalen des regelméi-
kigen Fiinfecks im Goldenen Schnitt teilen (Abb. [[d). In dieser Abbildung

108°

Abbildung 14: Die Diagonalen des regelméfigen Fiinfecks schneiden sich im
Goldenen Schnitt.

gilt ndmlich — da die Dreiecke ABC und ADC' &hnlich sind — fiir die
Streckenldngen zwischen diesen Punkten das Verhéltnis:
|AC|  |AD|
|AB|  |AC|’
Auferdem ist |[AD| = |AB| — |AC| und |AC| = |BD)|; wir erhalten somit:
|BD| |AB|—|BD|
|AB|  |BD|
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Insgesamt haben Wir also bewiesen, dass der Punkt D tatséchlich die Strecke
AB im Goldenen Schnitt teilt. Es verwundert also nicht, dass in Barths
Konstruktion einer Quintik mit 31 Singularitdten, die ja Fiinfecke und die
Fiinfeck—Symmetrie benutzt, der Goldene Schnitt auch bei einem der drei
Parameter, ndmlich d, wieder in Erscheinung tritt:

1
d:—2-§(1~|—\/5):—2-7,

wobel 7 == x4+ 1 = % = % + %\/5 wie oben den Kehrwert des Goldenen

Schnittes bezeichnet.

2.6 Die ikosaeder—symmetrische Barth—Sextik

Die Barth—Sextik hat eine ganz besondere Geschichte. Schon seit den frithen
1980ern war ndmlich bekannt, dass Flachen vom Grad 6 nicht mehr als 66
Singularitdten haben konnen. 1982 erschien auferdem ein Artikel, in dem
die Autoren meinten nachzuweisen, dass Sextiken, die im Wesentlichen von
der Form P — az-Q? = 0 sind, hochstens 64 haben kénnten. Mathematische
Artikel, die in anerkannten Zeitschriften erscheinen (wie der eben erwihnte),
enthalten aber auch manchmal Fehler — und das war hier tatséchlich der
Fall. Denn 1996 konstruierte Wolf Barth eine Fldche vom Grad sechs, die
genau die oben angegebene Form hat, und die 65 Singularitéten besitzt (siehe
Abb. [Hund auch Nr. 6 auf der Webseite [BL0O6], im Bild sieht man allerdings
nur 50 der insgesamt 65 Singularitéiten)!

Abbildung 15: Die Barth—Sextik mit 65 gewShnlichen Doppelpunkten.

Fast zeitgleich schafften es die beiden Mathematiker Jaffe und Ruberman
auferdem zu beweisen, dass 66 Singularititen nicht mdglich sind, dass also
auch Barths Weltrekord fiir immer unschlagbar sein wird:
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Satz 8 (W. Barth 1996, D.B. Jaffe / D. Ruberman 1997). Eine Sextik kann
mazimal 65 Singularitdten besitzen:

11(6) = 65.

Schon am Bild kann man die Tkosaeder-Symmetrie von Barths Konstruktion
erahnen. Die genaue Gleichung der Fliche ist folgende:

Bar65: P6 - Oé[(2 = 0,

wobei Py fiir die Symmetrie-Ebenen des regelméfigen Ikosaeders mit Glei-
chung Py := (7222 — y?)(r%y? — 22)(722? — 2?) mit 7 := (14 /5) steht und
K := 2?41?4222 —1 die Sphiire mit Radius 1 beschreibt; der Parameter o ist
o= 1(274+1) = 1(2+V/5) (siehe Abb. [[f). Interessanter Weise taucht hier
also gleich an mehreren Stellen der Kehrwert 7 des sogenannten Goldenen
Schnittes auf, der auch schon bei der Quintik mit 31 Singularitdten relevant
war.

Anhand der Gleichung kann man verstehen, dass die gesamte Fldche invari-
ant unter der gesamten Symmetriegruppe des Ikosaeders ist, da dies natiirlich
fiir die sechs Ebenen Py aber auch fiir die Sphire K gilt. Fiir andere Wer-
te von « ist die Flidche zwar auch ikosaeder-symmetrisch, hat aber weniger
Singularitéten: einfach mal in SURFER oder SURFEX ausprobieren!

Abbildung 16: Zur Konstruktion von Barths Sextik: links ein regelméfiger
Ikosaeder, in der Mitte seine 6 Symmetrie-Ebenen und rechts diese Ebenen
gemeinsam mit der Barth-Sextik in einem Bild.

2.7 Eine Septik mit 99 Singularitidten und endliche Zahlen-
systeme

Ahnlich wie bei der Quintik kann mit im Fall von Flichen vom Grad 7 nicht
auf naheliegende Weise einen der Platonischen Korper ausnutzen, um eine
Flache mit vielen Singularitéten zu konstruieren. Daher wird man zunéchst
einmal versuchen, wiederum ein regelméfiges n-Eck (hier passender Weise
ein 7-Eck) zu verwenden, doch leider fiihrt dies zunéchst auf einen noch viel
zu grofsen Suchraum.

27



Um in diesem riesigen Suchraum den einen kleinen Punkt (oder die sehr
wenigen Punkte) zu finden, der eine Septik mit sehr vielen Singularitaten
liefert, nutzte der Autor dieses Artikels in seiner Dissertation [Lab0i] aus,
dass man algebraische Fliachen auch iiber anderen Zahlensystemen betrach-
ten kann als den reellen Zahlen. Wir haben schon in Abschnitt [CZH gesehen,
dass man algebraische Flachen auch iiber den komplexen Zahlen studieren
kann. Jetzt gehen wir auf eine weitere Art von Zahlensystemen ein, ndmlich
die endlichen Zahlensysteme. Solche endlichen Zahlensysteme kennen wir alle
von der Uhr:

23 Uhr + 3 Stunden (= 26 Uhr) = 2 Uhr.

Besonders gut funktioniert das Rechnen mit solchen endlichen Zahlensyste-
men, wenn wir genau p Zahlen verwenden, wobei p eine Primzahl ist. Die
dabei verwendeten Zahlen sind also:

0,1,2,...,p—1

und es gilt:

p=0,
genauso wie bei der Uhr 24 Uhr = 0 Uhr ist. Ein solches Zahlensystem
wird iiblicherweise mit IF,, bezeichnet und heifst endlicher Kérper mit p
Elementen. In F, kann man nicht nur addieren, sondern auch hervorragend
multiplizieren und dividieren. Bei der Uhr (24 = 3-2-2-2 ist keine Primzahl!)
hat man im Gegensatz dazu das Problem, dass

3 Uhr - 8 = 24 Uhr = 0 Uhr;

in [F, kann nie passieren, dass das Produkt zweier von Null verschiedener
Zahlen Null ergibt, was das Rechnen erheblich vereinfacht; auferdem kann
man daher durch jede der endlich vielen Zahlen (aufer durch 0) dividieren.
Rechnungen in endlichen Koérpern haben zahllose Anwendungen; insbeson-
dere sind in der letzten Zeit Codierungstheorie und Kryptographie wichtig
geworden — kein Handy—Telefonat wére ohne endliche Korper méglich.

Wir kénnen das hier nicht weiter vertiefen, mochten aber wenigstens ein
Beispiel einer Kurve iiber einem endlichen Korper betrachten, und zwar den
Kreis k: 22+ y? = 1 iiber dem Korper F3, in dem nur die drei Zahlen 0, 1,2
existieren. In g gilt: 1+ 141 =0, also 142 = 0, so dass wir fiir 2 auch —1
schreiben konnten. Wir suchen nun alle Punkte (a,b) mit Koordinaten im
endlichen Kérper F3, die die Gleichung a? 4+ b? = 1 erfiillen. Gliicklicherweise
gibt es nur 3 -3 =9 verschiedene Punkte (a,b) mit Koordinaten in Fs.

e Beginnen wir mit dem Punkt (0,0); es gilt: 02+ 02 = 0 # 1, d.h. (0,0)
ist kein Punkt auf dem Kreis k.
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e Nun der Punkt (1,0): Es gilt 12+0% = 1, d.h. (1,0) und natiirlich auch
(0,1) sind Punkte auf k.

e Nun zu (2,0): 224+ 0% =4 = 1, d.h. (2,0) und daher aus Symmetrie-
griinden auch (0,2) sind Punkte auf k.

e Fiir (1,1) ergibt sich: 12 + 12 = 2 # 1, d.h. (1,1) liegt nicht auf dem
Kreis.

e Fiir (2,1) und (1,2) finden wir: 22 + 12 = 5 = 2 # 1; diese beiden
Punkte liegen also auch nicht auf k.

e Schlieflich noch (2,2): 22 + 22 = 8 = 2 # 1; dieser Punkt liegt auch
nicht auf k.

Insgesamt liegen also von den 9 Punkten (a,b) mit Koordinanten in F3 die
Punkte (1,0), (0,1), (2,0) und (0, 2) auf &, die anderen nicht. Wie man sieht
ist das Finden von Lésungen iiber endlichen Kérpern sehr einfach, weil man
alle Moglichkeiten ausprobieren kann!

Auf &hnliche Weise und mit einigen weiteren algebraischen und geometri-
schen Argumenten hat der Autor dieses Artikels 2004 eine Flidche vom Grad
7 (Septik) mit 99 Singularitdten konstruiert unter Benutzung des Compu-
teralgebra Programmes SINGULAR [GPS06], dessen besondere Stérke in An-
wendungen auf algebraische Geometrie und Singularititen liegt.

X | 4

Abbildung 17: Eine Septik mit 99 gewohnlichen Doppelpunkten.

Satz 9 (Labs 2005, Varchenko 1983). Fir die mazimale Anzahl p(7) von
Singularitdten auf einer Septik gilt:

99 < pu(7) < 104.
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Abbildung 18: Ein regelmifbiges 7-Eck, die Septik mit 99 Singularitéten,
einmal von ,0oben“ gesehen und einmal eine schréige, etwas hereingezoomte
Ansicht.

Die Gleichung dieser Septik ist der Quintik mit 31 Singularitéiten, die Barth
konstruiert hat, recht dhnlich: Diese Fliche hat die Symmetrie eines regel-
mékigen 7-Ecks; von ,oben“ kann man dies besonders gut sehen (Abb. [[J):

99 Singularitéten sind derzeit Weltrekord fiir Flichen vom Grad 7; bisher ist
aber kein Grund bekannt, aus dem es nicht sogar eine Septik mit 104 Sin-
gularidten geben konnte (die obere Schranke 104 bewies Anfang der 1980er
A.N. Varchenko); es mag daher sein, dass der Weltrekord des Autors dieses
Artikels noch zu verbessern ist — also: viel Spak beim Suchen nach einer
Septik mit mehr als 99 Singularitéten!
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