
Weltrekord�Flä
henAlgebrais
he Flä
hen mit vielen SingularitätenOliver Labs (Universität des Saarlandes)13. Januar 2008ZusammenfassungAlgebrais
he Flä
hen können glatt sein oder au
h einige Spitzen ha-ben1. Bes
hränkt man si
h auf Flä
hen mit gewissen Eigens
haften,z.B. auf Flä
hen mit einem festen sogenannten Grad , so konnte manbereits im 19. Jahrhundert beweisen, dass jede sol
he Flä
he nur end-li
h viele isolierte Singularitäten haben kann. Unmittelbar stellt si
hdie Frage: Wie viele?
Eine Flä
he vom Grad 7 mit 99 Singularitäten.Um diese Frage zu beantworten, muss man für jeden Grad (das isteine natürli
he Zahl d ∈ {1, 2, 3, . . .}) eine Zahl µ(d) �nden, so dass estatsä
hli
h eine Flä
he vom Grad d mit µ(d) Singularitäten gibt undso dass man irgendwie zeigen kann, dass eine sol
he Flä
he au
h ni
htmehr Singularitäten besitzen kann.Jede Flä
he vom Grad d, die alle vorher bekannten Zahlen von Singu-laritäten auf einer Flä
he von festem Grad d übertri�t, ist ein neuerWeltrekord. S
ha�t man es auÿerdem no
h zu beweisen, dass eine sol-
he Flä
he ni
ht mehr Singularitäten besitzen kann, so hat man sogargezeigt, dass der Weltrekord nie mehr zu verbessern ist!Wir werden sehen, dass bei der Su
he na
h Weltrekord-Flä
hen viel in-teressante Mathematik und insbesondere Geometrie ins Spiel kommt;sowohl Platonis
he Körper als au
h der Goldene S
hnitt werden mehr-fa
h auftau
hen sowie sogenannte endli
he Zahlensysteme.1sogenannte isolierte Singularitäten , die Flä
he auf dem Bild unten hat 99 davon� man sieht allerdings ni
ht alle, da die Abbildung nur einen kleinen Auss
hnitt zeigt



1 Algebrais
he Flä
hen � Eine kurze EinführungIn diesem Abs
hnitt erläutern wir detailliert, was algebrais
he Flä
hen sindund wie wir einige einfa
he Flä
hen re
ht gut verstehen können. Dazu be-nötigen wir etwas Mathematik, insbesondere müssen wir mit Glei
hungenarbeiten, die dur
h Polynome gegeben sind, d.h. Glei
hungen wie beispiels-weise
x3 + 3xyz + y2 − z2 = 0.Die dur
h diese Glei
hung de�nierte algebrais
he Flä
he besteht aus alljenen Punkten (x, y, z) des drei�dimensionalen Ans
hauungsraums, die beimEinsetzen von x, y, z in die linke Seite der Glei
hung 0 ergeben. Die Abbil-dung 1 zeigt einige typis
he algebrais
he Flä
hen, man
he davon glatt, anderemit Spitzen (sogenannten Singularitäten).

Abbildung 1: Einige algebrais
he Flä
hen, man
he glatt (die linken beiden),andere mit vielen Spitzen, sogenannten Singularitäten (die re
hten drei).Do
h ein S
hritt na
h dem anderen: zunä
hst betra
hten wir algebrais
heKurven, die man mit den Mitteln der S
hulmathematik re
ht gut verstehenkann. Darauf aufbauend werden wir uns dann mit den Flä
hen bes
häftigen.Wer si
h hauptsä
hli
h für die Ges
hi
hte und Geometrie der Weltrekord-Flä
hen interessiert, kann versu
hen, direkt zum entspre
henden Abs
hnitt2 zu springen, do
h werden dort wir zumindest einige der Begri�e verwenden,die hier erläutert werden.1.1 Ebene algebrais
he KurvenAlgebrais
he Kurven können wir über den Zugang von Funktions-Graphenre
ht gut verstehen; do
h bei weitem ni
ht alle algebrais
hen Kurven entste-hen als Graph einer Funktion! Trotzdem beginnen wir zunä
hst mit diesenspeziellen Kurven:1.1.1 Graphen von FunktionenWir betra
hten eine Zuordnung f der Form x 7→ f(x), die jeder reellenZahl x eine eindeutige reelle Zahl f(x) zuweist; sol
he Zuordnungen heiÿenFunktionen . 2



Beispiel 1. Einige einfa
he Beispiele von Funktionen:
• f : x 7→ f(x) = x.
• g : x 7→ g(x) = x2.Verans
hauli
hen können wir uns sol
he Funktionen mit Hilfe ihres Gra-phen in einem Koordinatensystem , indem wir dort alle Punkte mit denKoordinaten (x, f(x)) bzw. (x, g(x)) eintragen (Abb. 2).
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Abbildung 2: Graphen von f : x 7→ x, g : x 7→ x2.1.1.2 Implizite Glei
hungenS
hreibt man bei den Graphen für f(x) bzw. g(x) jeweils kurz y, so ergebensi
h die Glei
hungen:
• f : y = x.
• g : y = x2.Der Graph von g besteht also aus all den Punkten (x, y), die die Glei
hung

y = x2 erfüllen.S
hreiben wir dies um zu y−x2 = 0, so ist die Glei
hung ni
ht mehr prakti-s
herweise na
h y aufgelöst. Eine sol
he ni
ht na
h y aufgelöste Form heiÿtimplizite Glei
hung . In diesem Fall ist das Au�ösen der impliziten Glei-
hung na
h y natürli
h ganz einfa
h, do
h bei komplizierten Glei
hungenist dies im Allgemeinen gar ni
ht mögli
h! Hier ein weiteres Beispiel einerimpliziten Glei
hung:Frage 1. Wie sieht die Menge all jener Punkte aus, die die Glei
hung k:
x2 + y2 = 1erfüllen? 3



O�enbar hat diese Glei
hung für Punkte mit |x| > 1 oder |y| > 1 keineLösung. Um k genauer zu verstehen, versu
hen wir, die Glei
hung na
h yaufzulösen, um analog zu oben einen Graph zu zei
hnen:
y2 = 1 − x2,d.h. y =

√
1 − x2 oder y = −

√
1 − x2 (au
h hier sieht man, dass |x| > 1keine Lösung liefert).Die Glei
hung k führt also ni
ht auf eine Funktion (bei der ja jedem x eineindeutiges y zugeordnet wird!).Trotzdem können wir in ein Koordinatensystem alle Punkte einzei
hnen, diedie geforderte Glei
hung x2 + y2 = 1 erfüllen, nämli
h in zwei Teilen:

x

y

−1

1

−1 1

y =
√

1 − x2

y = −
√

1 − x2Beispielsweise liegt der Punkt P =
(
√

1
2 ,

√
1
2

) auf dem oberen Teil dieserKurve, denn setzen wir die x-Koordinate von P in √
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,was tatsä
hli
h die y-Koordinate von P ist.Wir hätten dies au
h direkt an der oben gegebenen Glei
hung für k sehenkönnen, indem wir die Koordinaten von P dort einsetzen:
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= 1.1.1.3 Kreise und EllipsenDas Bild im vorigen Abs
hnitt sieht aus wie ein Kreis; und tatsä
hli
h könnenwir beweisen, dass alle Punkte, die die Glei
hung k : x2 + y2 = 1 erfüllen,einen Kreis mit Radius 1 bes
hreiben!Ein Kreis ist nämli
h die Kurve der Punkte, die von einem gewählten Mit-telpunkt M den glei
hen Abstand r > 0 haben. Und diese Eigens
haft haben4



au
h die Punkte auf k. Dies kann man folgendermaÿen sehen: Nehmen wireinen Punkt Q = (t, s) auf einem Kreis mit Radius 1 um den Ursprung
(0, 0).
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Der Satz des Pythagoras sagt, dass in einem re
htwinkligen Dreie
k mitHypothenuse der Länge c und Katheten der Längen a, b gilt: a2 + b2 = c2.Angewendet auf unseren Punkt Q = (t, s) auf dem Kreis heiÿt dies: t2 +s2 =
1, da das Dreie
k MPQ re
htwinklig ist und da die Länge der Stre
ke QMgerade der Radius (also hier 1) des Kreises ist. Q erfüllt also die Glei
hungfür k. Umgekehrt liegt jeder Punkt, der k : x2 +y2 = 1 erfüllt, auf dem Kreisum den Ursprung mit Radius 1.Analog bes
hreibt x2 + y2 = r2 einen Kreis mit Radius r. Ersetzt man eineder Koordinaten, z.B. x, dur
h ein Vielfa
hes, z.B. 2x, so verändert si
h dieGlei
hung zu: E : 4x2 + y2 = 1.Frage 2. Wie sieht die Kurve der Punkte aus, die E erfüllen?Dies ist eine in der x-Ri
htung gestau
hte Variante des Kreises, eine Ellipse :
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1.2 Algebrais
he Flä
henNa
h den ebenen algebrais
hen Kurven betra
hten wir nun algebrais
he Flä-
hen. Wir beginnen mit denen, die den Kurven sehr stark ähneln, nämli
hZylinder. Erst dann kommen wir zu Kugelober�ä
hen und anderen Objekten.5



1.2.1 Ein ZylinderAu
h Punkte im Raum können wir dur
h Koordinaten bes
hreiben (linkesBild in Abb. 3):
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Abbildung 3: Der Punkt (1, 1
2 , 2) in einem 3-dimensionalen Koordinatensy-stem und ein Zylinder mit der Glei
hung x2 + y2 = 1 (die vertikale A
hse istdie z-A
hse).Zei
hnen wir jetzt alle Punkte (x, y, z) ein, die die bereits im vorigen Ab-s
hnitt verwendete Kreisglei
hung k : x2 + y2 = 1 erfüllen, so fällt auf, dassdiese Glei
hung ni
ht von z abhängt! Daher gilt: (x, y) erfüllt k ⇒ (x, y, z)erfüllt k für jedes beliebige z.Die Menge aller Punkte (x, y, z) im Raum, die die Glei
hung x2 + y2 − 1erfüllen, besteht also aus lauter Kreisen (für jeden Wert z nämli
h einen,re
htes Bild oben). Eine sol
he Flä
he nennt man Zylinder .Die pink eingezei
hnete Ebene im Bild hat die Glei
hung z = −1. Sie bestehtaus allen Punkten, deren z-Koordinate −1 ist, liegt also parallel zur x, y-Ebene. Sie s
hneidet den Zylinder in einem Kreis.1.2.2 Eine Kugelober�ä
he (Sphäre)Betra
hten wir jetzt Glei
hungen, in denen au
h die dritte Variable, z, vor-kommt:Frage 3. Wie sieht die Menge der Punkte im Raum aus, die die Glei
hung

S : x2 + y2 + z2 = 1erfüllen?Um dies zu verstehen, überlegen wir uns, wie beim Zylinder, wie die S
hnitteder Menge mit Ebenen aussehen, die parallel zur x, y-Ebene liegen:6



Der S
hnitt der Menge aller Punkte, die z = 0 erfüllen, mit jener Mengealler Punkte, die x2 + y2 + z2 = 1 erfüllen, besteht aus genau den Punkten,die beide Glei
hungen erfüllen. Wir können also die Forderung z = 0 in diezweite Glei
hung einsetzen und erhalten: x2+y2 = 1, einen Kreis mit Radius
1 (links in Abb. 4):

Abbildung 4: Drei Ebenen�S
hnitte der Sphäre x2 + y2 + z2 = 1.Analog ergibt si
h:
• |z| = 9

10 , x2 + y2 + 81
100 = 1 ⇔ x2 + y2 = (1− 81

100 ), z = 9
10 , ein kleinererKreis (mittleres Bild oben).

• |z| = 1, x2 + y2 + 12 = 1 ⇐⇒ x2 + y2 = 0, z = 1. Diese Glei
hungerfüllt nur der Punkt (0, 0, 1).
• |z| > 1, x2 + y2 + 12 = 1 ⇐⇒ x2 + y2 < 0, |z| > 1. Dies hat keineLösung, da x2 ≥ 0, y2 ≥ 0 (re
htes Bild oben).Analog zur Re
hnung beim Kreis kann man mit Hilfe des Satzes von Pytha-goras na
hweisen, dass jeder Punkt der Flä
he, die dur
h

x2 + y2 + z2 = r2de�niert wird, Abstand r vom Ursprung (0, 0, 0) des Koordinatensystemshat, dass die Glei
hung also eine Kugelober�ä
he (au
h Sphäre genannt)mit Radius r bes
hreibt.1.2.3 Ein EllipsoidGenau wie bei der Ellipse oben, können wir nun die Glei
hung der Sphärelei
ht verändern, indem wir in einer Koordinatenri
htung, z.B. z, mit einemFaktor a > 0 stre
ken oder stau
hen. Das liefert:
x2 + y2 + (az)2 = 1.Die Bilder in Abb. 5 zeigen die drei mögli
hen Fälle a = 3

4 (gestre
kt), a = 1(Sphäre), a = 3
2 (gestau
ht), wobei au
h der S
hnitt mit y = 0 eingezei
hnetist. 7



Abbildung 5: Drei vers
hiedene Ellipsoide.1.2.4 Hyperboloid und KegelÄhnli
h zur Kugel und zum Ellipsoiden sind Hyperboloiden. Im Verglei
hzur Sphäre hat si
h in der folgenden Formel nur ein Vorzei
hen geändert:
x2 + y2 − z2 = r2.Für feste Werte von z = a ergeben si
h wieder Kreise (linkes Bild) mitGlei
hung x2+y2 = r2+a2. Im Gegensatz dazu erhält man mit festen Wertenvon y = a nun aber sogenannte Hyperbeln (re
htes Bild) mit Glei
hung

x2 − z2 = r2 − a2:
Frage 4. Was passiert nun, wenn wir den Wert für r immer kleiner wählen?Für den S
hnitt mit der Ebene z = 0 ergeben si
h immer kleinere Kreise,bis sie s
hlieÿli
h für r = 0 zu einem Punkt mit Glei
hung x2 + y2 = 0ges
hrumpft sind (linke beiden Bilder unten):
Für die Ebene y = 0 ergeben si
h Hyperbeln, die si
h immer mehr zwei Ge-raden annähern, bis man s
hlieÿli
h für r = 0 zwei si
h s
hneidende Geradenmit Glei
hung (x2 − z2) = 0 erhält, da: x2 − z2 = (x + z) · (x − z).8



1.2.5 Flä
hen von höherem GradBisher haben wir nur sehr spezielle algebrais
he Flä
hen betra
htet, nämli
hsol
he, die si
h als Nullstellen von Polynomen vom Grad 1 oder 2 ergeben.Im Allgemeinen ist eine algebrais
he Flä
he vom Grad d die Menge allerNullstellen eines Polynoms vom Grad d in drei Variablen:
a1x

d + a2x
d−1y + a3x

d−1z + a4x
d−1 + a5x

d−2y2 + · · · + ak = 0,wobei die ai gewisse Konstanten sind.Beispiele von Flä
hen von höherem Grad lernen wir im folgenden Abs
hnittüber Singularitäten kennen.1.2.6 Flä
hen über reellen und komplexen ZahlenIm vorigen Abs
hnitt haben wir ni
ht thematisiert, aus wel
hem Zahlenbe-rei
h die Konstanten ai und die Werte, die wir für x, y, z einsetzen dürfen,stammen. Stills
hweigend werden die meisten Leser hier reelle Zahlen ange-nommen haben. Häu�g ist es aber au
h sinnvoll, algebrais
he Flä
hen überanderen Zahlensystemen zu betra
hten, insbesondere über den komplexenZahlen . Lassen wir nur reelle Zahlen zu, so ergibt si
h nämli
h folgendeS
hwierigkeit: Die Glei
hung
x2 + y2 − a = 0hat für a > 0 eine ganze Kurve von reellen Punkten (x, y) als Lösungsmenge,nämli
h einen Kreis mit Radius a; für a = 0 ergibt si
h als einzige reelleLösung der Punkt (0, 0) und für a < 0 existiert gar keine reelle Lösung.Wir können hier ni
ht detailliert komplexe Zahlen vorstellen, sondern be-tra
hten nur das obige Beispiel etwas genauer. Wir erweitern die bekannteMenge der reellen Zahlen, indem wir au
h Zahlen der Form a+ib (sogenanntekomplexe Zahlen , die kurz als C notiert) zulassen, wobei i die imaginäreEinheit ist, d.h. eine Zahl, für die gilt: i2 = −1. O�enbar kann i keine reelleZahl sein, da ja Quadrate reeller Zahlen immer ni
ht negativ sind. Man kannzeigen, dass man mit Hilfe von Zahlen der Form a + ib ni
ht nur die überden reellen Zahlen ni
ht lösbare Glei
hung x2 = −1 lösen kann, sondern9



dass man sogar für jedes Polynom vom Grad d ≥ 1 in einer Variablen eineNullstelle der Form a + ib �ndet! Beispielsweise sind die komplexen Zahlen
1 + i

√
3 und 1 − i

√
3 Lösungen der Glei
hung x2 − 2x + 4 = 0, da:

(x − (1 + i
√

3))(x − (1 − i
√

3)) = (x − 1 − i
√

3)(x − 1 + i
√

3)

= (x − 1)2 − (i
√

3)2

= x2 − 2x + 1 − i2 ·
√

3
2

= x2 − 2x + 1 − (−1) · 3
= x2 − 2x + 4.Dies führt dazu, dass au
h die Glei
hung x2 + y2 = −1 über den komplexenZahlen Lösungen hat; beispielsweise liegen die Punkte (0,±i), (±i, 0) aufdiesem Kreis. Obwohl es si
h vermutli
h auf den ersten Bli
k ni
ht so anhört,vereinfa
ht si
h dur
h Hinzunahme au
h komplexer Lösungen das Studiumalgebrais
her Kurven und Flä
hen in vielerlei Hinsi
ht sehr, da man ni
htimmer die Fälle unters
heiden muss es gibt �keine Lösung�, �endli
h vieleLösungen� oder �unendli
h viele Lösungen�: über den komplexen Zahlen hatder �Kreis� mit Glei
hung x2+y2+a = 0 für jedes a unendli
h viele Lösungen� und Analoges gilt au
h für algebrais
he Flä
hen.1.3 SingularitätenSingularitäten heiÿen ganz spezielle Punkte algebrais
her Kurven und Flä-
hen. Um diese allmähli
h kennen zu lernen, beginnen wir mit der einfa
hstenSingularität, einem sogenannten gewöhnli
hen Doppelpunkt, bevor wir dannetwas kompliziertere Punkte betra
hten.1.3.1 Ein gewöhnli
her DoppelpunktDer spitze Punkt (der Ursprung (0, 0, 0)) des Kegels mit Glei
hung

x2 + y2 − z2 = 0,den wir oben gesehen haben (s. au
h Abb. 6), ist eine sogenannte Singulari-tät . Au
h algebrais
h sind Singularitäten dur
h eine besondere Eigens
haftausgezei
hnet: Fassen wir das Polynom k = x2 + y2 − z2 jeweils als ein Poly-nom in einer Variablen auf, in dem die anderen Variablen Konstanten sind,so können wir jeweils die Ableitung des Polynoms na
h dieser Variablenbilden. Ist beispielsweise x die Variable und sehen wir y, z als Konstantenan, so ist die Ableitung 2x, da die Ableitung einer Konstante 0 ergibt. Mans
hreibt dies kurz:
∂k

∂x
(x, y, z) = 2x10



Abbildung 6: Ein Doppelkegel mit einer Singularität in (0, 0, 0), die gewöhn-li
her Doppelpunkt genannt wird.und nennt diesen Ausdru
k die partielle Ableitung von k na
h x. Analog�ndet man für die partiellen Ableitungen na
h y bzw. z:
∂k

∂y
(x, y, z) = 2y,

∂k

∂z
(x, y, z) = −2z.Der einzige Punkt P = (Px, Py, Pz), für den sowohl k(Px, Py, Pz) = 0 undau
h alle diese partiellen Ableitungen 0 werden, ist hier o�enbar der Punkt

O = (0, 0, 0), der Ursprung, weil 2x = 0 genau dann gilt, wenn x = 0 undentspre
hend für y und z.Ein Punkt P = (Px, Py, Pz) einer algebrais
hen Flä
he mit Glei
hung f(x, y, z) =
0 heiÿt daher Singularität , wenn sowohl gilt

f(Px, Py, Pz) = 0als au
h:
∂f

∂x
(Px, Py, Pz) =

∂f

∂y
(Px, Py, Pz) =

∂f

∂z
(Px, Py, Pz) = 0.Singularitäten können sehr unters
hiedli
h aussehen und haben sehr vieleVerbindungen zu anderen Gebieten der Mathematik, aber au
h zur Physikund der belebten und unbelebten Natur.Die Singularität des oben gezeigten Kegels ist die einfa
hste Singularität undwird gewöhnli
her Doppelpunkt genannt. Sie ist ausgezei
hnet unter allenSingularitäten dur
h die Eigens
haft, dass die sogenannte Determinante derHessematrix, kurz: det Hf , in diesem Punkt ni
ht vers
hindet. Die Glei
hung

detHf erhält man aus jener von f dur
h Bilden einiger zweiter partiellerAbleitungen, also partieller Ableitungen der partiellen Ableitungen, nämli
h:
detHf := det







∂2f
∂2x

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂2y

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂2z







,11



wobei die sogenannte Determinante , kurz: det, folgendermaÿen bere
hnetwird:
det





a11 a12 a13

a21 a22 a23

a31 a32 a33



 = a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a11a23a32 − a12a21a33.Lei
ht lässt si
h für f = x2 + y2 − z2 na
hre
hnen:
detHf (0, 0, 0) = det





2 0 0
0 2 0
0 0 2



 = 8 6= 0,d.h. f hat einen gewöhnli
hen Doppelpunkt in (0, 0, 0).1.3.2 Ak SingularitätenDur
h kleine Veränderungen an der Glei
hung x2 + y2 − z2 = 0 des Kegelskönnen wir bereits sehr unters
hiedli
he Singularitäten erhalten.Betra
hten wir zunä
hst die Glei
hung
A+−

2 (x, y, z) = x3 + y2 − z2 = 0.O�enbar ist hier der Punkt (0, 0, 0) au
h eine Singularität von A+−

2 , danämli
h Einsetzen in die Glei
hung und in die partiellen Ableitungen 3x2,
2y, −2z, jeweils 0 ergibt (linkes Bild):
Allerdings ist der Punkt (0, 0, 0) kein gewöhnli
her Doppelpunkt, weil dieDeterminanten der Hessematrix dort vers
hwindet:

det HA+−

2

(0, 0, 0) = det





6 · 0 0 0
0 2 0
0 0 2



 = 0.Versu
hen wir wieder, die Geometrie dieser Flä
he etwas zu verstehen, indemwir sie mit vers
hiedenen Ebenen s
hneiden. Der S
hnitt mit Ebenen x = aergibt a3 + y2 − z2 = 0, also �nden wir für a 6= 0 Hyperbeln und für a = 0zwei Geraden (re
hte drei Bilder oben).12



Interessant wird es nun für S
hnitte mit y = a. Für a = 0 �nden wir nämli
heine Kurve mit einer Spitze, die Cuspe genannt wird (linkes Bild unten), mitGlei
hung x3−z2 = 0. Mit einem Tas
henre
hner oder einem Computeralge-braprogramm ist es ni
ht s
hwer, diese ebene Kurve zu zei
hnen, indem maneinige Werte bere
hnet: Da ja aus x3 − z2 = 0 folgt, dass z = ±
√

x3, kannman hier einfa
h vers
hiedene positive Werte von x und 0 einsetzen und er-hält die zugehörigen z-Koordinaten. Z.B.: x = 0⇒ z = 0, x = 1⇒ z = ±1,
x = 4⇒ z = ±8. Diese Kurve ist in der Mitte zu sehen:

z

x

Allgemeiner bezei
hnet man die Singularität der Flä
hen mit den Glei
hun-gen
A+−

k (x, y, z) = xk+1 + y2 − z2, k ∈ N,als A+−

k Singularitäten. Für k = 1 �nden wir den Kegel, der einen gewöhn-li
hen Doppelpunkt als Singularität in (0, 0, 0) hat und den wir weiter obenbereits betra
htet haben; für k = 2 ergibt si
h die Cuspe, für höheres kerhalten wir weitere Singularitäten, die keine gewöhnli
hen Doppelpunktesind und bei denen die Spitze �immer spitzer� wird � einfa
h mal in sur-fer [Mey05℄ oder surfex [HLM05℄ ausprobieren!2 Weltrekord-Flä
henWir bes
hreiben nun einige der aktuellen Weltrekord-Flä
hen auf dem Gebietder Flä
hen mit vielen Singularitäten, sowie deren oft faszinierende Ges
hi
h-te und Geometrie. Wir beginnen mit den einfa
hsten Fällen vom Grad 1 und
2, au
h wenn hier die Geometrie der Flä
hen, die mit den Singularitätenzusammenhängt, ni
ht so interessant ist wie bei den Flä
hen von höheremGrad. Ab Grad 3 und 4 werden wir dann au
h Zusammenhänge zu anderenBerei
hen der Geometrie kennen lernen, wie beispielsweise den platonis
henKörpern und dem Goldenen S
hnitt.Wie s
hon in der Zusammenfassung angedeutet, kann man in man
hen Fäl-len sogar zeigen, dass die aktuellen Weltrekorde nie mehr verbessert werdenkönnen. Dies ist derzeit für d = 1, 2, . . . , 6 der Fall. Nur ab Grad d = 7ist also no
h unklar, ob der aktuelle Weltrekord, 99, au
h der bestmögli
heist. Die folgende Tabelle gibt einen Überbli
k für man
he d; wie s
hon in13



der Zusammenfassung erwähnt bezei
hnet dabei µ(d) die maximal mögli
heAnzahl von Singularitäten auf einer Flä
he vom Grad d:
d 1 2 3 4 5 6 7 8 d

µ(d) ≥ 0 1 4 16 31 65 99 168 ≈ 5
12d3

µ(d) ≤ 0 1 4 16 31 65 104 174 ≈ 4
9d3Zu dieser Tabelle müssen wir no
h bemerken, dass µ(d) genauer gesagt diemaximal mögli
he Anzahl komplexer Singularitäten einer algebrais
henFlä
he, deren de�nierendes Polynom au
h kopmlexe Koe�zienten haben darf(siehe Abs
hnitt 1.2.6), bezei
hnet. Da aber derzeit in keinem der aufgeführ-ten Fälle eine bessere obere oder untere S
hranke für eine reelle Variante

µR(d) von µ(d) bekannt ist, gehen wir hier ni
ht weiter auf die Unters
hei-dung zwis
hen µR(d) und µ(d) ein. Insbesondere haben alle Flä
hen, die diein der Tabelle angegebenen unteren S
hranken realisieren, auss
hlieÿli
h re-elle Singularitäten, so dass es uns re
ht lei
ht mögli
h ist, diese Flä
hen zuvisualisieren!Eine wesentli
h ausführli
here und mathematis
h fundiertere Darstellung desThemas Flä
hen mit vielen Singularitäten liefert die Dissertation des Autors[Lab05℄. Hier versu
hen wir, die Besonderheiten der jeweiligen Mathematikund Geometrie der Konstruktionen no
h ans
hauli
her und detaillierter alsin den angegebenen Arbeiten zu erläutern.2.1 EbenenDie Geometrie einer Ebene (Flä
hen vom Grad 1) ist ni
ht besonders fas-zinierend. Trotzdem gehen wir hier auf diese einfa
hsten Flä
hen detailliertein, da man an diesem Beispiel auf sehr elementare Weise na
hre
hnen kann,dass diese Flä
hen gar keine Singularitäten haben können.Beginnen wir mit der Glei
hung einer Ebene:
E : ax + by + cz + d = 0,wobei a, b, c, d für jede Ebene gewisse feste Werte annehmen. Im ersten Ab-s
hnitt haben wir gesehen, dass eine Singularität einer Flä
he ein Punktist, in dem sowohl die Flä
henglei
hung als au
h deren partielle Ableitungenerfüllt sind. Bere
hnen wir die letzteren, so ergibt si
h:

∂E

∂x
= a,

∂E

∂y
= b,

∂E

∂z
= c.Damit alle glei
hzeitig vers
hwinden, muss sowohl a = 0, als au
h b = 0und c = 0 gelten. Soll die Ebene E also eine Singularität besitzen, so hat14



sie die Form: d = 0. Eine sol
he Ebene hat aber nur dann Punkte, wenndie Konstante d eben gerade 0 ist. Dann ist die verbleibende Glei
hung derEbene aber 0 = 0, was gar keine Bedingung an die Variablen x, y, z darstelltund daher den ganzen Raum bes
hreibt und ni
ht etwa eine Ebene. Wirhaben also gerade bewiesen, dass eine Ebene keine Singularität haben kann:Satz 1. Eine Ebene hat keine Singularität, insbesondere: µ(1) = 0.2.2 QuadrikenFlä
hen vom Grad 2 heiÿen Quadriken. S
hon für diese ist es ni
ht mehrso einfa
h, elementar na
hzure
hnen, wie viele Singularitäten sie haben kön-nen, obwohl s
hon die Grie
hen vor über 2000 Jahren die meisten ihrer Ei-gens
haften bereits verstanden. Für eine sehr ans
hauli
he Darstellung vonwesentli
h mehr Eigens
haften als wir hier darstellen können, siehe [HCV32℄.Heutzutage lernt man Quadriken als Mathematik-Student übli
herweise inder sogenannten linearen Algebra kennen: Das nahezu vollständige Verständ-nis der Quadriken bildet einen der Höhepunkte des ersten Studienjahres. Wirgeben hier nur das dort bewiesene Ergebnis an:Satz 2 (Klassi�kation der Quadriken). Dur
h Drehung und/oder Vers
hie-bung lässt si
h jede Quadrik im R
3 in eine der folgenden drei Formen über-führen:1. Fall: ax2 + by2 + cz2 = 0,2. Fall: ax2 + by2 + cz2 − 1 = 0,3. Fall: ax2 + by2 − z = 0,wobei a, b, c, d ∈ R gewisse Konstanten sind. Erlaubt man au
h Stau
hungenund Stre
kungen, so kann man errei
hen, dass a, b, c, d ∈ {−1, 0, 1}.Die wi
htigsten Fälle dieser Klassi�kation sind in Abbildung 7 zu sehen.In den meisten Fällen kann man die Geometrie der Flä
hen ausgehend vonderen Glei
hung re
ht gut verstehen. Beispielsweise, indem man eine derdrei Variablen auf einen festen Wert setzt; dies gibt dann eine ebene Kurvevom Grad zwei, also entweder eine Ellipse, eine Hyperbel, eine Parabel, zweiGeraden u.ä. � einfa
h einmal versu
hen!Anhand der Bilder zur Klassi�kation kann man s
hon erahnen, dass eineQuadrik hö
hstens eine isolierte Singularität haben kann, do
h wir könnendies au
h mit Hilfe des obigen Klassi�kationssatzes re
ht lei
ht na
hweisen:

15



Sphäre (Kugelober�ä
he) Ellipsoid Eins
haliger Hyperboloid(2. Fall: a, b, c = 1) (2. Fall: a, b, c > 0) (2. Fall: a, c > 0, b < 0)
(Elliptis
her) Zylinder Hyperbolis
her Zylinder Zweis
haliger Hyperboloid(2. Fall: a, b > 0, c = 0) (2. Fall: a > 0, b < 0, c = 0) (2. Fall: a > 0, b, c < 0)
Elliptis
her Paraboloid Hyperbolis
her Paraboloid Zwei Ebenen(3. Fall: a, b > 0) (3. Fall: a > 0, b < 0) (1. Fall: a > 0, b < 0, c = 0)

Doppelkegel Ein Punkt Eine Geraden(1. Fall, a, b > 0, c < 0) (1. Fall, a, b, c > 0) (1. Fall, a, b > 0, c = 0)Abbildung 7: Die Klassi�kation der Quadriken.16



Satz 3. Eine Quadrik hat hö
hstens eine isolierte Singularität. Diese istdann ein gewöhnli
her Doppelpunkt. Insbesondere:
µ(2) = 1.Beweis: Wegen des Satzes 2 zur Klassi�kation der Quadriken müssen wiruns nur die drei dort angegebenen Fälle ans
hauen, jeweils die partiellenAbleitungen bere
hnen und dann die mögli
hen Singularitäten bestimmen.Wir betra
hten hier nur die Fälle des Satzes 2 mit a, b, c 6= 0:1. Fall: Im ersten Fall sind die partiellen Ableitungen 2ax, 2by, 2cz. Für

a, b, c 6= 0 können diese nur dann glei
hzeitig null sein, wenn x = y =
z = 0. Der Punkt (0, 0, 0) ist tatsä
hli
h ein Punkt der Quadrik, da
a ·02 + b ·02 + c ·02 = 0 und daher die einzige Singularität der Quadrik.Wie wir oben gesehen haben ist diese ein gewöhnli
her Doppelpunkt.2. Fall: Au
h im zweiten Fall sind die partiellen Ableitungen 2ax, 2by, 2cz.Für a, b, c 6= 0 können diese wieder nur dann glei
hzeitig null sein, wenn
x = y = z = 0. Der Punkt (0, 0, 0) ist aber kein Punkt der Quadrik,da a · 02 + b · 02 + c · 02 = 0 6= 1. In diesem Fall hat die Quadrik alsokeine Singularität.3. Fall: Im letzten Fall sind die partiellen Ableitungen 2ax, 2by,−1. Diepartielle Ableitung na
h z ist konstant −1 und kann also nie 0 werden,so dass diese Quadriken au
h keine Singularität haben können.Insgesamt kann also nur im 1. Fall eine Singularität auftreten.2.3 Kubis
he Flä
hen und Platonis
he KörperFür Ebenen konnten wir no
h re
ht lei
ht per Hand na
hre
hnen, dass die-se Flä
hen keine Singularitäten haben können. Für Quadriken mussten wirs
hon ein Resultat aus dem ersten Studiensemester zu Rate ziehen, um na
h-zuweisen, dass diese Flä
hen hö
hstens eine Singularität haben können.Für Kubiken (also Flä
hen, die dur
h ein Polynom vom Grad 3 bes
hriebenwerden) ist die Situation na
h komplizierter. Um hier die Frage na
h dermögli
hen Anzahl von Singularitäten beantworten zu können, müssen wirs
hon auf ein Resultat, das man erst in einer Spezialvorlesung zur algebrai-s
hen Geometrie bespri
ht, zurü
kgreifen � das allerdings die Mathematikerdes 19. Jahrhunderts au
h bereits kannten.
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2.3.1 Zur Ges
hi
hte der kubis
hen Flä
henDie ersten interessanten Resultate zu kubis
hen Flä
hen fanden die beidenBriten George Salmon und Arthur Cayley 1849 in einem Briefwe
hsel her-aus: Auf jeder kubis
hen Flä
he, die keine Singularitäten hat, liegen genau
27 Geraden (links in der Abbildung unten) � und wenn man die Flä
henso verändert, dass Singularitäten auftreten, so fallen man
he der Geradenübereinander (re
htes Bild).

Die Clebs
h�Kubik hat keine Die Cayley�Kubik hat 4 SingularitätenSingularität und 27 Geraden. und nur 9 vers
hiedene Geraden.Dies mag auf den ersten Bli
k sehr erstaunli
h ers
heinen, da kubis
he Flä-
hen do
h sehr ges
hwungen und gar ni
ht gerade ers
heinen, do
h man kanndies tatsä
hli
h beweisen; unter der Annahme, dass wenigstens eine Geradeauf einer sol
hen Flä
he liegt, ist es sogar ni
ht sehr s
hwer, die tatsä
hli
heAnzahl zu bestimmen.Beeindru
kend ist, dass kubis
he Flä
hen immer no
h Objekt der Fors
hungsind, obwohl man s
hon so vieles über sie weiÿ; das liegt zum groÿen Teildaran, dass man kleine Auss
hnitte der kubis
hen Flä
hen heutzutage dazubenutzt, um no
h kompliziertere Objekte anzunähern. Dies wird beispiels-weise im Berei
h des Computer Aided Design eingesetzt, da kubis
he Flä
hennämli
h viele weitere praktis
he Eigens
haften besitzen, wie z.B. die Tatsa-
he, dass sie parametrisierbar sind. Dies können wir hier leider ni
ht vertiefen,wir mö
hten nur im nä
hsten Abs
hnitt ein kleines Detail dieser sehr umfas-senden Theorie der kubis
hen Flä
hen beleu
hten, nämli
h die Frage na
hder maximalen Anzahl von Singularitäten auf ihnen. Die Webseite [LvS00℄gibt einen umfassenden Überbli
k über alle mögli
hen Gestalten kubis
herFlä
hen, s. au
h [HL06℄.2.3.2 Eine obere S
hranke für µ(d)S
hon im 19. Jahrhundert haben Mathematiker gegebenen algebrais
hen Flä-
hen andere algebrais
hen Flä
hen zugeordnet, die in besonderer Beziehungzu ihnen stehen. Eine sol
he zugeordnete Flä
he ist die sogenannte dualeFlä
he . Diese hat sehr viel mit der ursprüngli
hen Flä
he zu tun; insbeson-dere ist nämli
h die duale Flä
he der dualen Flä
he wieder die ursprüngli
he18



Flä
he! Zwar können wir das Konzept der dualen Flä
he hier ni
ht erläutern,do
h wir können zumindest eine Formel für deren Grad anwenden lernen: Istder Grad d einer gegebenen algebrais
hen Flä
he f wenigstens d ≥ 3 undbezei
hnen wir den Grad der dualen Flä
he von f mit d∗, so gilt:
d∗(f) ≤ d(d − 1)2 − 2µ(f),wobei µ(f) die Anzahl der isolierten Singularitäten von f ist. Da bekanntist, dass duale Flä
hen von Quadriken wieder Quadriken sind, gilt d∗(f) ≥ 3,falls d ≥ 3. Setzen wir dies in die obige Unglei
hung ein, so erhalten wir na
hUmstellen die folgende obere S
hranke für die Anzahl µ(f) von Singularitätenauf f und da f beliebig vom Grad d war au
h eine obere S
hranke für µ(d):Satz 4 (19. Jahrhundert, viellei
ht von G. Salmon). Für die maximal mög-li
he Anzahl µ(d) von Singularitäten auf einer Flä
he vom Grad d ≥ 3 gilt:
µ(d) ≤ 1

2

(
d(d − 1)2 − 3

)
.Setzen wir in diese Formel einige Werte für d ≥ 3 ein, so erhalten wir bei-spielsweise: µ(3) ≤ 4, µ(4) ≤ 16, µ(5) ≤ 34. Wir werden später sehen, dasstatsä
hli
h µ(4) = 16 gilt, dass aber die wahre S
hranke im Grad 5 niedrigerals 34 liegt. Do
h nun zunä
hst zurü
k zum Grad 3.2.3.3 Die Cayley�Kubik mit vier SingularitätenWir haben eben gesehen, dass eine kubis
he Flä
he hö
hstens vier Singu-laritäten haben kann, do
h gibt es wirkli
h eine Flä
he, die diese S
hrankeerrei
ht? Ja, es gibt sie tatsä
hli
h; zu Ehren eines Mathematikers, der vielüber kubis
he Flä
hen gearbeitet hat, wird sie heute oft Cayley�Kubik ge-nannt, obwohl der S
hweizer Ludwig S
hlä�i 1863 der erste war, der kubis
heFlä
hen detailliert auf deren Singularitäten untersu
ht hat.Eine besonders symmetris
he Glei
hung einer kubis
hen Flä
he mit der ma-ximal mögli
hen Anzahl von µ(3) = 4 Singularitäten erhält man z.B., indemman in der Glei
hung 1

x
+ 1

y
+ 1

z
+ 1

w
= 0 mit dem Hauptnenner dur
hmul-tipliziert und w = 1 − x − y − z setzt:Cay : yzw + xzw + xyw + xyz = 0, w = 1 − x − y − z.Eine gute Übungsaufgabe für den Leser ist es, na
hzuprüfen, dass diese Flä-
he tatsä
hli
h wie behauptet genau vier Singularitäten hat. Dies sind übri-gens die vier Punkte (0, 0, 0), (0, 0, 1), (0, 1, 0) und (1, 0, 0). Das liefert:Satz 5 (Mitte des 19. Jahrhunderts). Eine kubis
he Flä
he kann maximalvier Singularitäten besitzen:

µ(3) = 4.19



2.3.4 Die Cayley�Kubik und Tetraeder-SymmetrieNi
ht erstaunen sollte hierbei, dass man na
h Vertaus
hen der Koordinateneines dieser Punkte wiederum eine der Singularitäten erhält � s
hlieÿli
hbleibt beim Vertaus
hen von x, y, z in der Glei
hung der Flä
he Cay dieGlei
hung vollständig erhalten. Man sagt in einem sol
hen Fall, dass dieGlei
hung invariant unter den Vertaus
hungen ist. Betra
hten wir dieseVertaus
hungen etwas genauer; es sind folgende fünf:
α :

x 7→ y

y 7→ x

z 7→ z

β :

x 7→ y

y 7→ z

z 7→ x

γ :

x 7→ z

y 7→ y

z 7→ x

δ :

x 7→ z

y 7→ x

z 7→ y

η :

x 7→ x

y 7→ z

z 7→ y.Zählen wir die �Vertaus
hung� ι, die gar keine Vertaus
hungen vornimmt, diealso x auf x, y auf y und z auf z abbildet, hinzu, so haben wir insgesamt 6Vertaus
hungen. Dies ist kein Zufall, da man lei
ht na
hweisen kann, dass estatsä
hli
h genau n! = n(n − 1)(n − 2) · · · 1 Vertaus
hungen von n vers
hie-denen Bu
hstaben gibt: Für den ersten der Bu
hstaben hat man nämli
h nmögli
he Bild�Bu
hstaben zur Auswahl, für den nä
hsten no
h n − 1, dannno
h n − 2 usw.Vertaus
hungen haben den Vorteil, dass man zwei beliebige Vertaus
hungen
α und β einer gewissen Menge von Bu
hstaben au
h hintereinander ausfüh-ren kann (ges
hrieben: β◦α, gespro
hen: α na
h β) und insgesamt wiederumeine Vertaus
hung erhält. Auÿerdem kann man o�enbar jede Vertaus
hung
α wieder rü
kgängig ma
hen mit der sogenannten dazu inversen Vertau-s
hung α−1. S
hlieÿli
h gilt no
h (α ◦ β) ◦ γ = α ◦ (β ◦ γ) für drei beliebigeVertaus
hungen. Eine Menge mit all diesen Eigens
haften heiÿtGruppe ; dieVertaus
hungen einer festen Menge von n vers
hiedenen Bu
hstaben bildendemna
h eine Gruppe und zwar die sogenannte symmmetris
he Gruppeauf n Bu
hstaben , kurz bezei
hnet mit Sn.Am obigen Beispiel der Gruppe der Vertaus
hungen, unter denen die Glei-
hung der Flä
he Cay invariant bleibt, können wir dies alles sehr konkretverstehen: Wenden wir zunä
hst α auf die drei Variablen (x, y, z) an, sotaus
hen x und y ihren Platz, (y, x, z); wenden wir no
hmals α an, so sindwir wieder bei der ursprüngli
hen Reihenfolge angekommen: (x, y, z), d.h.
α = α−1 in diesem Fall. Das gilt für β ni
ht, denn β(x, y, z) = (y, z, x) und
β(y, z, x) = (z, x, y); s
hlieÿli
h gibt aber β(z, x, y) = (x, y, z), d.h. dreifa
hesAnwenden von β ist ni
ht zu unters
heiden vom Ni
htstun, also β ◦β ◦β = ι.Man kann lei
ht überprüfen, dass wir dur
h mehrfa
hes Hintereinanderaus-führen von α und β tatsä
hli
h alle se
hs Vertaus
hungen α, . . . , η, ι erhalten.Man sagt dann, dass α und β die Gruppe erzeugen .Ersetzen wir nun in der obigen Glei
hung von Cay die x, y, z, w dur
h gewisseEbenen x̃, ỹ, z̃, w̃, so kann man sogar errei
hen, dass die Glei
hung Cay inva-20



riant unter beliebigen Vertaus
hungen der vier �Bu
hstaben� x̃, ỹ, z̃, w̃ bleibt,nämli
h, wenn x̃, ỹ, z̃, w̃ die vier Seiten�ä
hen eines regelmäÿigen Tetraedersbes
hreiben.
Abbildung 8: Ein regelmäÿiger Tetraeder und die tetraeder-symmetris
heVersion der Cayley�Kubik.Diese bilden dann insgesamt eine Gruppe von 4! = 24 Vertaus
hungen, un-ter denen Cay invariant bleibt. Betra
hten Sie die resultierende tetraeder�symmetris
he Flä
he do
h glei
h mal in surfer [Mey05℄ oder surfex [HLM05℄(s. au
h Abb. 8), indem Sie wählen:
x̃ = 1 − z −

√
2x, ỹ = 1 − z +

√
2x, z̃ = 1 + z +

√
2y, w̃ = 1 + z −

√
2y.Natürli
h können Sie au
h hier die Koordinaten der Singularitäten lei
htbere
hnen, au
h wenn die Re
hnungen viellei
ht etwas langwierig werden.Wegen der gewählten Tetraeder�Symmetrie sollten si
h dabe gerade die 4E
ken des Tetraeders mit den Seiten�ä
hen x̃, ỹ, z̃, w̃ ergeben.Die weiteren Platonis
hen Körper lassen si
h bei kubis
hen Flä
hen ni
htauf ähnli
he Weise zur Konstruktion einsetzen. Da einige dieser seit mehrals 2000 Jahren Mathematiker faszinierende Körper aber später auftau
henwerden, geben wir kurz eine Übersi
ht in Abb. 9. Die Platonis
hen Körperhaben no
h viel tiefer liegende Beziehungen zu Singularitäten, auf die wirhier leider ni
ht eingehen können; siehe dazu beispielsweise [Gre92℄.

Tetraeder Würfel Oktoeder Dodekaeder IkosaederAbbildung 9: Die Platonis
hen Körper.
21



2.4 Kummer�Quartiken und no
hmals TetraederBereits ein Jahr na
hdem Ludwig S
hlä�i 1863 die kubis
hen Flä
hen bzgl.ihrer Singularitäten klassi�ziert hatte, ermittelte Eduard Kummmer die ma-ximal mögli
he Anzahl µ(4) von Singularitäten auf Flä
hen vom Grad 4(sogenannten Quartiken). Wie wir in Satz 4 gesehen haben, gilt nämli
h:
µ(4) ≤ 16. Kummer bemerkte zunä
hst einmal, dass die sogenannte Fresnel-s
he Wellen�ä
he tatsä
hli
h 16 Singularitäten besitzt, dass also gilt:Satz 6 (E. Kummer, 1864). Eine Quartik kann maximal 16 Singularitätenbesitzen:

µ(4) = 16.Do
h damit lieÿ er es ni
ht bewenden; vielmehr studierte er sehr detailliertQuartiken, die diese maximale Anzahl von 16 Singularitäten haben. Er gabau
h eine sehr s
höne tetraeder�symmetris
he Familie von Glei
hungen sol-
her Flä
hen an:Kuµ :=
(
x2 + y2 + z2 − µ2

)2 − λ x̃ỹz̃w̃, λ =
3µ2 − 1

3 − µ2
, µ ∈ R,wobei x̃, ỹ, z̃, w̃ wieder die s
hon im Abs
hnitt über tetraeder�symmetris
heKubiken verwendeten Seiten�ä
hen eines regelmäÿigen Tetraeders sind und

µ eine reelle Zahl ist (für Abb. 10 wurde µ = 1.3 gewählt).

Abbildung 10: Eine Kummer�Quartik mit 16 gewöhnli
hen Doppelpunkten.Ein hervorragendes Bu
h über diese heutzutage na
h Kummer benanntenQuartiken mit der maximalen Anzahl von Singularitäten ist [Hud90℄. Ander Tatsa
he, dass ganze Bü
her über diese Flä
hen ges
hrieben wurden,sieht man, dass wir hier no
h wesentli
h mehr über sie sagen könnten; ausPlatzmangel müssen wir aber leider auf die angegebene Literatur verweisen.22



2.5 Togliatti�Quintiken, 5�E
ke und der Goldene S
hnittDer Italiener Eugenio Giuseppe Togliatti bewies bereits im Jahr 1937, dasses eine Flä
he vom Grad 5 (daher der Name Quintik) mit genau 31 Singula-ritäten gibt � damals Weltrekord!Da die obere S
hranke in Satz 4 wie s
hon erwähnt nur beweist, dass es ni
htmehr als 34 Singularitäten auf einer Quintik geben kann und da au
h in derFolgezeit zunä
hst niemand eine wesentli
h bessere obere S
hranke �ndenkonnte, su
hten Geometer jahrzehnte lang na
h einer Flä
he vom Grad 5mit wenigstens 32 Singularitäten, bis s
hlieÿli
h 1980 der Franzose ArneauBeauville dur
h eine interessante Beziehung zur Codierungstheorie zeigenkonnte, dass eine Quintik ni
ht mehr als 31 Singularitäten besitzen kann.Das heiÿt also, dass Togliattis Weltrekord niemals mehr verbessert werdenkann! Es gilt also:Satz 7 (E.G. Togliatti 1937, A. Beauville 1980). Eine Quintik kann maximal
31 Singularitäten besitzen:

µ(5) = 31.Unglü
kli
herweise ist Togliattis Konstruktion ni
ht so lei
ht zu visualisieren,so dass wir für unsere Abbildung 11 auf eine Konstruktion von Wolf Barthaus den 1990igern einer Flä
he zurü
kgreifen, die ebenfalls 31 gewöhnli
heDoppelpunkte liefert: Ähnli
h zur Konstruktion der tetraeder-symmetris
hen

Abbildung 11: Barths Togliatti�Quintik mit 31 gewöhnli
hen Doppelpunk-ten.Cayley�Kubik mag es natürli
h ers
heinen, einen Platonis
hen Körper au
hhier zu verwenden. Da es aber keinen Platonis
hen Körper gibt, der entwedergenau fünf Seiten�ä
hen oder genau fünf Symmetrieebenen hat, ist ni
htso klar, wie man so eine Flä
he vom Grad 5 auf diese Weise konstruierenkönnte. Daher besitzt die abgebildete Quintik mit 31 Singularitäten wenigerSymmetrie, nämli
h die Symmetrie eines ebenen Fünfe
ks, d.h. unter allen23



Spiegelungen in der x, y�Ebene, die ein regelmäÿiges ebenes Fünfe
k festlassen, bleibt au
h Barths Togliatti�Quintik fest. Anhand von Abb. 12 kannman si
h lei
ht überlegen, dass die Gruppe aller Vertaus
hungen der Punkteder Ebene, die das Fünfe
k festlassen, genau aus 10 Vertaus
hungen besteht,nämli
h fünf Drehungen (wobei wir die Drehung um 0◦ mitzählen) sowie fünfSpiegelungen.
α

β

g

h
γ

Abbildung 12: Spiegelungen und Drehungen, die ein regelmäÿiges Fünfe
kfest lassen: α ist die Spiegelung an der Geraden g, β jene an h und γ ist dieDrehung um den Ursprung um den Winkel 1
5 · 360◦.Die Glei
hung der oben abgebildeten Quintik ist ni
ht einfa
h zu �nden;Barth startete mit einer Familie von Glei
hungen, die von drei Parametern

a, b, d abhängt, nämli
h: Bara,b,d := P − az·Q2,wobei P ein Polynom vom Grad 5 und Q eine gewisse Quadrik ist, und zwar:
P :=

∏4
j=0

(

cos
(

πj
4

)
x + sin

(
πj
4

)
y − 1

)

= 1
16

(

x5 − 5x4 − 10x3y2 − 10x2y2 + 20x2

+5xy4 − 5y4 + 20y2 − 16
)

,

Q := x2 + y2 + bz2 + z + d.Dur
h geometris
he und algebrais
he Argumente fand Barth s
hlieÿli
h Wer-te für a, b, d, die tatsä
hli
h eine Flä
he mit 31 gewöhnli
hen Doppelpunktenliefern:
a = − 5

32
, b = −5 −

√
5

20
, d = −(1 +

√
5).Nr. 23 auf der Webseite [BL06℄ (www.Calendar.Algebrai
Surfa
e.net) zeigteinen Film, bei dem einige Werte für a und b dur
hlaufen werden, bis s
hlieÿ-li
h jene Werte errei
ht werden, für die si
h die 31 Singularitäten ergeben.Die Zahl d tau
ht hier ni
ht zufällig auf; vielmehr hat sie sehr viel mit demsogenannten Goldenen S
hnitt zu tun: Eine Teilung im Goldenen S
hnittliegt vor, wenn si
h die gröÿere Teilstre
ke zur ganzen Stre
ke verhält, wie24
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︸ ︷︷ ︸

1−x

︸ ︷︷ ︸

xAbbildung 13: Der Goldene S
hnitt x erfüllt: x
1 = 1−x

x
.die kleinere Teilstre
ke zur gröÿeren. Ist die Länge der ganzen Stre
ke 1, soergibt si
h (s. au
h Abb. 13):

x

1
=

1 − x

x

⇐⇒ 0 = x2 + x − 1 =
(
x +

1

2
(1 +

√
5)

)(
x +

1

2
(1 −

√
5)

)

⇐⇒ x ∈
{

−1

2
± 1

2

√
5
}

.Da die Länge x einer Stre
ke ni
ht negativ sein kann, �nden wir als eindeutigeLösung: x = −1
2+ 1

2

√
5. Bemerkenswert an dieser Zahl ist beispielsweise au
h,dass

1

x
= x + 1,wie si
h unmittelbar aus der de�nierenden Glei
hung ergibt. Geometris
htau
ht der Goldene S
hnitt bei Fünfe
ken auf, so dass es ni
ht verwundert,dass der Parameter d, den Barth fand au
h damit zusammen hängt: Mankann nämli
h re
ht lei
ht na
hweisen, dass si
h die Diagonalen des regelmä-ÿigen Fünfe
ks im Goldenen S
hnitt teilen (Abb. 14). In dieser Abbildung

72◦

54◦

108◦

36◦

72◦

108◦

C
D

B

AAbbildung 14: Die Diagonalen des regelmäÿigen Fünfe
ks s
hneiden si
h imGoldenen S
hnitt.gilt nämli
h � da die Dreie
ke ABC und ADC ähnli
h sind � für dieStre
kenlängen zwis
hen diesen Punkten das Verhältnis:
|AC|
|AB| =

|AD|
|AC| .Auÿerdem ist |AD| = |AB| − |AC| und |AC| = |BD|; wir erhalten somit:

|BD|
|AB| =

|AB| − |BD|
|BD| .25



Insgesamt haben Wir also bewiesen, dass der Punkt D tatsä
hli
h die Stre
ke
AB im Goldenen S
hnitt teilt. Es verwundert also ni
ht, dass in BarthsKonstruktion einer Quintik mit 31 Singularitäten, die ja Fünfe
ke und dieFünfe
k�Symmetrie benutzt, der Goldene S
hnitt au
h bei einem der dreiParameter, nämli
h d, wieder in Ers
heinung tritt:

d = −2 · 1

2
(1 +

√
5) = −2 · τ,wobei τ := x + 1 = 1

x
= 1

2 + 1
2

√
5 wie oben den Kehrwert des GoldenenS
hnittes bezei
hnet.2.6 Die ikosaeder�symmetris
he Barth�SextikDie Barth�Sextik hat eine ganz besondere Ges
hi
hte. S
hon seit den frühen1980ern war nämli
h bekannt, dass Flä
hen vom Grad 6 ni
ht mehr als 66Singularitäten haben können. 1982 ers
hien auÿerdem ein Artikel, in demdie Autoren meinten na
hzuweisen, dass Sextiken, die im Wesentli
hen vonder Form P − az·Q2 = 0 sind, hö
hstens 64 haben könnten. Mathematis
heArtikel, die in anerkannten Zeits
hriften ers
heinen (wie der eben erwähnte),enthalten aber au
h man
hmal Fehler � und das war hier tatsä
hli
h derFall. Denn 1996 konstruierte Wolf Barth eine Flä
he vom Grad se
hs, diegenau die oben angegebene Form hat, und die 65 Singularitäten besitzt (sieheAbb. 15 und au
h Nr. 6 auf der Webseite [BL06℄, im Bild sieht man allerdingsnur 50 der insgesamt 65 Singularitäten)!

Abbildung 15: Die Barth�Sextik mit 65 gewöhnli
hen Doppelpunkten.Fast zeitglei
h s
ha�ten es die beiden Mathematiker Ja�e und Rubermanauÿerdem zu beweisen, dass 66 Singularitäten ni
ht mögli
h sind, dass alsoau
h Barths Weltrekord für immer uns
hlagbar sein wird:26



Satz 8 (W. Barth 1996, D.B. Ja�e / D. Ruberman 1997). Eine Sextik kannmaximal 65 Singularitäten besitzen:
µ(6) = 65.S
hon am Bild kann man die Ikosaeder-Symmetrie von Barths Konstruktionerahnen. Die genaue Glei
hung der Flä
he ist folgende:Bar65 : P6 − αK2 = 0,wobei P6 für die Symmetrie-Ebenen des regelmäÿigen Ikosaeders mit Glei-
hung P6 := (τ2x2 − y2)(τ2y2 − z2)(τ2z2 −x2) mit τ := 1

2 (1+
√

5) steht und
K := x2+y2+z2−1 die Sphäre mit Radius 1 bes
hreibt; der Parameter α ist
α := 1

4(2τ + 1) = 1
4(2 +

√
5) (siehe Abb. 16). Interessanter Weise tau
ht hieralso glei
h an mehreren Stellen der Kehrwert τ des sogenannten GoldenenS
hnittes auf, der au
h s
hon bei der Quintik mit 31 Singularitäten relevantwar.Anhand der Glei
hung kann man verstehen, dass die gesamte Flä
he invari-ant unter der gesamten Symmetriegruppe des Ikosaeders ist, da dies natürli
hfür die se
hs Ebenen P6 aber au
h für die Sphäre K gilt. Für andere Wer-te von α ist die Flä
he zwar au
h ikosaeder�symmetris
h, hat aber wenigerSingularitäten: einfa
h mal in surfer oder surfex ausprobieren!

Abbildung 16: Zur Konstruktion von Barths Sextik: links ein regelmäÿigerIkosaeder, in der Mitte seine 6 Symmetrie�Ebenen und re
hts diese Ebenengemeinsam mit der Barth�Sextik in einem Bild.2.7 Eine Septik mit 99 Singularitäten und endli
he Zahlen-systemeÄhnli
h wie bei der Quintik kann mit im Fall von Flä
hen vom Grad 7 ni
htauf naheliegende Weise einen der Platonis
hen Körper ausnutzen, um eineFlä
he mit vielen Singularitäten zu konstruieren. Daher wird man zunä
hsteinmal versu
hen, wiederum ein regelmäÿiges n-E
k (hier passender Weiseein 7-E
k) zu verwenden, do
h leider führt dies zunä
hst auf einen no
h vielzu groÿen Su
hraum. 27



Um in diesem riesigen Su
hraum den einen kleinen Punkt (oder die sehrwenigen Punkte) zu �nden, der eine Septik mit sehr vielen Singularitätenliefert, nutzte der Autor dieses Artikels in seiner Dissertation [Lab05℄ aus,dass man algebrais
he Flä
hen au
h über anderen Zahlensystemen betra
h-ten kann als den reellen Zahlen. Wir haben s
hon in Abs
hnitt 1.2.6 gesehen,dass man algebrais
he Flä
hen au
h über den komplexen Zahlen studierenkann. Jetzt gehen wir auf eine weitere Art von Zahlensystemen ein, nämli
hdie endli
hen Zahlensysteme. Sol
he endli
hen Zahlensysteme kennen wir allevon der Uhr:
23 Uhr + 3 Stunden (= 26 Uhr) = 2 Uhr.Besonders gut funktioniert das Re
hnen mit sol
hen endli
hen Zahlensyste-men, wenn wir genau p Zahlen verwenden, wobei p eine Primzahl ist. Diedabei verwendeten Zahlen sind also:

0, 1, 2, . . . , p − 1und es gilt:
p = 0,genauso wie bei der Uhr 24 Uhr = 0 Uhr ist. Ein sol
hes Zahlensystemwird übli
herweise mit Fp bezei
hnet und heiÿt endli
her Körper mit pElementen . In Fp kann man ni
ht nur addieren, sondern au
h hervorragendmultiplizieren und dividieren. Bei der Uhr (24 = 3·2·2·2 ist keine Primzahl!)hat man im Gegensatz dazu das Problem, dass

3 Uhr · 8 = 24 Uhr = 0 Uhr;in Fp kann nie passieren, dass das Produkt zweier von Null vers
hiedenerZahlen Null ergibt, was das Re
hnen erhebli
h vereinfa
ht; auÿerdem kannman daher dur
h jede der endli
h vielen Zahlen (auÿer dur
h 0) dividieren.Re
hnungen in endli
hen Körpern haben zahllose Anwendungen; insbeson-dere sind in der letzten Zeit Codierungstheorie und Kryptographie wi
htiggeworden � kein Handy�Telefonat wäre ohne endli
he Körper mögli
h.Wir können das hier ni
ht weiter vertiefen, mö
hten aber wenigstens einBeispiel einer Kurve über einem endli
hen Körper betra
hten, und zwar denKreis k : x2 + y2 = 1 über dem Körper F3, in dem nur die drei Zahlen 0, 1, 2existieren. In F3 gilt: 1+ 1 + 1 = 0, also 1 + 2 = 0, so dass wir für 2 au
h −1s
hreiben könnten. Wir su
hen nun alle Punkte (a, b) mit Koordinaten imendli
hen Körper F3, die die Glei
hung a2 +b2 = 1 erfüllen. Glü
kli
herweisegibt es nur 3 · 3 = 9 vers
hiedene Punkte (a, b) mit Koordinaten in F3.
• Beginnen wir mit dem Punkt (0, 0); es gilt: 02 + 02 = 0 6= 1, d.h. (0, 0)ist kein Punkt auf dem Kreis k.28



• Nun der Punkt (1, 0): Es gilt 12 +02 = 1, d.h. (1, 0) und natürli
h au
h
(0, 1) sind Punkte auf k.

• Nun zu (2, 0): 22 + 02 = 4 = 1, d.h. (2, 0) und daher aus Symmetrie-gründen au
h (0, 2) sind Punkte auf k.
• Für (1, 1) ergibt si
h: 12 + 12 = 2 6= 1, d.h. (1, 1) liegt ni
ht auf demKreis.
• Für (2, 1) und (1, 2) �nden wir: 22 + 12 = 5 = 2 6= 1; diese beidenPunkte liegen also au
h ni
ht auf k.
• S
hlieÿli
h no
h (2, 2): 22 + 22 = 8 = 2 6= 1; dieser Punkt liegt au
hni
ht auf k.Insgesamt liegen also von den 9 Punkten (a, b) mit Koordinanten in F3 diePunkte (1, 0), (0, 1), (2, 0) und (0, 2) auf k, die anderen ni
ht. Wie man siehtist das Finden von Lösungen über endli
hen Körpern sehr einfa
h, weil manalle Mögli
hkeiten ausprobieren kann!Auf ähnli
he Weise und mit einigen weiteren algebrais
hen und geometri-s
hen Argumenten hat der Autor dieses Artikels 2004 eine Flä
he vom Grad

7 (Septik) mit 99 Singularitäten konstruiert unter Benutzung des Compu-teralgebra Programmes Singular [GPS06℄, dessen besondere Stärke in An-wendungen auf algebrais
he Geometrie und Singularitäten liegt.

Abbildung 17: Eine Septik mit 99 gewöhnli
hen Doppelpunkten.Satz 9 (Labs 2005, Var
henko 1983). Für die maximale Anzahl µ(7) vonSingularitäten auf einer Septik gilt:
99 ≤ µ(7) ≤ 104.

29



Abbildung 18: Ein regelmäÿiges 7-E
k, die Septik mit 99 Singularitäten,einmal von �oben� gesehen und einmal eine s
hräge, etwas hereingezoomteAnsi
ht.Die Glei
hung dieser Septik ist der Quintik mit 31 Singularitäten, die Barthkonstruiert hat, re
ht ähnli
h: Diese Flä
he hat die Symmetrie eines regel-mäÿigen 7-E
ks; von �oben� kann man dies besonders gut sehen (Abb. 18):
99 Singularitäten sind derzeit Weltrekord für Flä
hen vom Grad 7; bisher istaber kein Grund bekannt, aus dem es ni
ht sogar eine Septik mit 104 Sin-gulariäten geben könnte (die obere S
hranke 104 bewies Anfang der 1980erA.N. Var
henko); es mag daher sein, dass der Weltrekord des Autors diesesArtikels no
h zu verbessern ist � also: viel Spaÿ beim Su
hen na
h einerSeptik mit mehr als 99 Singularitäten!Literatur[BL06℄ Bothmer, H.-C. G.v. und O. Labs: Geometri
al AnimationsAdvent Calendar 2006. www.Calendar.Algebrai
Surfa
e.net,2006.[GPS06℄ Greuel, G.-M., G. Pfister und H. S
hönemann: Singular3.0. A Computer Algebra System for Polynomial Computati-ons, Centre for Computer Algebra, Univ. Kaiserslautern, 2006.http://www.singular.uni-kl.de.[Gre92℄ Greuel, G.-M.: Deformation und Klassi�kation von Singularitä-ten und Moduln. Jahresber. Deuts
h. Math.-Verein. Jubiläumsta-gung 1990, Seiten 177�238, 1992.[HCV32℄ Hilbert, D. und S. Cohn-Vossen: Ans
hauli
he Geometrie.Verlag von Julius Springer, Berlin, 1932.[HL06℄ Holzer, S. und O. Labs: in: M. Elkadi and B. Mourrain andR. Piene: Algebrai
 Geometry and Geometri
 Modeling, KapitelIllustrating the Classi�
ation of Real Cubi
 Surfa
es. Springer,2006. 30
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