Direkt zum Inhalt

Lexikon der Geowissenschaften: Fernerkundung

Fernerkundung, remote sensing (engl.), télédétection (franz.), umfaßt den Komplex der berührungsfreien quantitativen und qualitativen Aufzeichnung, Speicherung, thematischen Verarbeitung und Interpretation bzw. Klassifikation von objektbeschreibender elektromagnetischer Strahlung mittels geeigneter abbildender oder nichtabbildender Sensoren, analoger oder digitaler Datenträger und analoger oder digitaler Bildanalyse. Die Aufzeichnung von Gravitationsfeldern, magnetischen oder elektrischen Feldern sowie von akustischen Wellen (Sonar) wird i.d.R. nicht dem Terminus Fernerkundung zugeordnet.

Objektbeschreibende elektromagnetische Strahlung setzt sich in Funktion der Wellenlänge aus spezifischen Anteilen reflektierter, gestreuter und/oder emittierter Strahlung (Reflexion, Streuung, Emission) zusammen. Interaktionsmedien sind die Atmosphäre und die Erdoberfläche im Sinne aller natürlichen und künstlichen Oberflächen. Daher wird ein zentraler Bereich der Fernerkundung auch als Erdbeobachtung (earth observation) bezeichnet.

Die Parameter der Fernerkundung werden durch den Verlauf des Strahlungspfades von der Strahlungsquelle bis zur Strahlungsaufzeichnung festgelegt.

Elektromagnetische Strahlung wird von Energiequellen ausgesendet, breitet sich in der Atmosphäre aus, tritt in Interaktion mit den atmosphärischen Teilchen und mit der Erdoberfläche, wird von Sensoren innerhalb oder außerhalb der Atmosphäre aufgezeichnet und in analoger und/oder digitaler Form gespeichert. Mittels eines geeigneten Systems zur Bilddatenanalyse und Bilddatenausgabe erfolgt eine Bearbeitung, Klassifikation und Visualisierung der Bilddaten.

Energiequellen wie Sonne und Erde emittieren elektomagnetische Strahlung in wellenlängenabhängigen Intensitäten (Plancksches Strahlungsgesetz, Stefan-Boltzmann-Gesetz, Wiensches Verschiebungsgesetz). Passive Fernerkundungsverfahren zeichnen elektromagnetische Strahlung auf, die von der Erdoberfläche reflektiert und/oder emittiert wird. Aktive Fernerkundungsverfahren wie Radar oder Laser (Lidar) senden kohärente Strahlungspulse aus und registrieren die Laufzeit bzw. die Amplituden- und Phasendifferenz der von der Erdoberfläche rückgestreuten/reflektierten Signale. Radiometrische Korrekturen berücksichtigen die Strahlungscharakteristika der jeweiligen Energiequellen.

Die Atmosphäre vermindert die Intensität der Sonnenstrahlung durch Streuung und Absorption in Funktion der Streupartikelgröße und der Wellenlänge (atmosphärische Extinktion). Große Transparenz besteht in sog. atmosphärischen Fenstern im sichtbaren Bereich des Spektrums, im nahen, im mittleren und im thermalen Infrarot sowie in hohem Maße im Mikrowellenbereich (elektromagnetisches Spektrum). Atmosphärische Korrekturen der Bilddaten sollen störende Einflüsse zufolge Extinktion minimieren.

Bei Interaktion der Strahlung mit der Erdoberfläche werden je nach Art der Landbedeckung (landcover) gewisse Strahlungsanteile reflektiert, andere absorbiert. Die Variation der Reflexion in Funktion der Wellenlänge wird objektspezifische Spektralsignatur genannt und ist Kenngröße für die spektrale (thematische) Differenzierbarkeit von Objekttypen.

Sensoren zeichnen spektrale Strahldichtewerte in Funktion von Zeit, Ort und Oberflächenart auf. Geeignete Methoden der Datenerfassung und Datenspeicherung ermöglichen die topographische und thematische Charakterisierung des erfaßten Geländeausschnittes. Sensoren besitzen begrenzte radiometrische Auflösung, spektrale Auflösung und geometrische Auflösung. Meßbildkameras nehmen photographische (analoge) Bilder mit spektraler Auflösung im Wellenlängenbereich des sichtbaren Lichtes und im nahen Infrarot auf, während optomechanische Scanner und optoelektronische Scanner sowie abbildende Spektrometer und Radiometer mit spektraler Auflösung im Sichtbaren, im nahen, mittleren und thermischen Infrarot sowie im Mikrowellenbereich und Radarantennen mit spektraler Auflösung im Mikrowellenbereich der Gewinnung von digitalen Bildern in Form von zeilen- und spaltenweise angeordneten, grauwertcodierten Bildelementen dienen. Im allgemeinen besitzen photographische Systeme hohe geometrische und geringe spektrale Auflösung, während nichtphotographische Systeme hohe spektrale aber geringere geometrische Auflösung haben. Trägerplattformen für die jeweiligen Sensoren können Stative, Flugzeuge oder Satelliten sein (Luftbild, Satellitenbild).

Das erste dokumentierte photographische Luftbild aus dem Jahr 1858 nahm Gaspard Félix Tournachon (genannt Nadar, 1820-1910) in der Nähe von Paris von einem Ballon aus auf. Das erste Luftbild aus dem Flugzeug aus dem Jahr 1909 stammt von Wilbur Wright (1867-1912), das erste photographische Satellitenbild von der amerikanischen Explorer-6-Mission im Jahre 1959. Das erste digitale Satellitenbild der Erderkundung aus dem Jahr 1972 stammt von dem Scanner an Bord des amerikanischen ERTS-1-Satelliten (Earth Resources Technology Satellite, ab 1975 Landsat), nachdem bereits 1960 der für meteorologische Erkundungen genutzte amerikanische Satellit TIROS-1 (Television Infrared Observation Satellite) erste nicht photographische Satellitenbilder aufgenommen hatte.

Systeme zur Verarbeitung und Analyse der Bilddaten beruhen auf der jeweils spezifischen Konstellation Experte-Hardware-Software. Bei visueller Interpretation analoger photographischer Bilder dominiert das geschulte Wahrnehmungsvermögen des Experten gegenüber der Gerätekonfiguration, die durch analoge optische Bildauswertegeräte wie Spiegelstereoskope oder Interpretoskope bestimmt wird. Hauptaugenmerk wird in diesem Fall auf die visuelle stereoskopische Interpretation (Stereoskopie) von Bildpaaren gelegt. Bei der digitalen multispektralen Klassifikation und digitalen texturellen Klassifikation von Bildern dominiert der Hardware- und Software-Anteil, ohne daß die Intervention des Experten an Bedeutung verliert. Typische Hardware-Software-Konfigurationen sind graphische Computer-Arbeitsplätze auf Basis von Personal Computer oder Workstation mit großer Speicherkapazität, hoher Datenverarbeitungsrate, hochauflösender Graphik sowie ausreichender Input- und Output-Peripherie für Einlesen und Drucken bzw. Plotten von Bilddaten.

Wichtigste Ziele der Bildanalyse in der Fernerkundung sind Bildverbesserung, geometrische Rektifizierung der perspektiv und projektiv verzerrten Bilder (Geocodierung), Klassifizierung nach multispektralen, textur- und musterabhängigen Parametern, Einbeziehung von Expertenwissen, multitemporale Vergleiche sowie Integration in Geoinformationssysteme (GIS).

Produkte der Fernerkundung der Erde sind (geocodierte) originäre oder klassifizierte Bilddaten in digitaler und/oder analoger Form (Orthobild), meist als kombinierte Bild-Strich-Karten (Bildkarte) mit Koordinatenbezug, des weiteren flächenbezogene Statistiken in Tabellen- oder Diagrammform sowie objektspezifische spektrale Signaturenkataloge.

Aktuelle Trends in der Fernerkundung gehen einerseits in Richtung Operationalisierung geometrisch hochauflösender satellitengestützter Sensorsysteme (optoelektronische Scanner) und hyperspektraler Scanner (abbildende Spektrometer), andererseits in Richtung Integration nichtabbildender Daten der Fernerkundung, insbesondere zur Generierung digitaler Geländemodelle der Erdoberfläche, wie z.B. Radar-Interferometrie und flugzeuggestütztes Laser-Scanning, und schließlich auch in Richtung verstärkter Nutzung wissensbasierter Bildanalyseverfahren. [EC]

Lesermeinung

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

  • Die Autoren
Redaktion

Landscape GmbH
Dipl.-Geogr. Christiane Martin
Nicole Bischof
Dipl.-Geol. Manfred Eiblmaier

Fachberater

Allgemeine Geologie
Prof. Dr. V. Jacobshagen, Berlin

Angewandte Geologie
Prof. Dr. H. Hötzl, Karlsruhe

Bodenkunde
Prof. Dr. H.-R. Bork, Potsdam

Fernerkundung
Prof. Dr. phil. M. Buchroithner, Dresden

Geochemie
Prof. Dr. W. Altermann, München

Geodäsie
Prof. Dr. K.-H. Ilk, Bonn

Geomorphologie
Prof. Dr. W. Andres, Frankfurt / Main

Geophysik
Prof. Dr. P. Giese, Berlin

Historische Geologie
Prof. Dr. H.-G. Herbig, Köln

Hydrologie
Prof. Dr. H.-J. Liebscher, Koblenz

Kartographie
Prof. Dr. W.G. Koch, Dresden

Klimatologie
Prof. Dr. Ch.-D. Schönwiese, Frankfurt / Main

Kristallographie
Prof. Dr. K. Hümmer, Karlsruhe

Landschaftsökologie
Dr. D. Schaub, Aarau, Schweiz

Meteorologie
Prof. Dr. G. Groß, Hannover

Mineralogie
Prof. Dr. G. Strübel, Gießen

Ozeanographie
Prof. Dr. J. Meincke, Hamburg

Petrologie
Dr. R. Hollerbach, Köln

Autoren

Allgemeine Geologie
Dipl.-Geol. D. Adelmann, Berlin
Dr. Ch. Breitkreuz, Berlin
Prof. Dr. M. Durand Delga, Avon, Frankreich
Dipl.-Geol. K. Fiedler, Berlin
Prof. Dr. V. Jacobshagen, Berlin
Dr. W. Jaritz, Burgwedel
Prof. Dr. H. Kallenbach, Berlin
Dr. J. Kley, Karlsruhe
Prof. Dr. M. Lemoine, Marli-le-Roi, Frankreich
Prof. Dr. J. Liedholz, Berlin
Prof. Dr. B. Meißner, Berlin
Dr. D. Mertmann, Berlin
Dipl.-Geol. J. Müller, Berlin
Prof. Dr. C.-D. Reuther, Hamburg
Prof. Dr. K.-J. Reutter, Berlin
Dr. E. Scheuber, Berlin
Prof. Dr. E. Wallbrecher, Graz
Dr. Gernold Zulauf, Frankfurt

Angewandte Geologie
Dr. A. Bohleber, Karlsruhe
Dipl.-Geol. W. Breh, Karlsruhe
Prof. Dr. K. Czurda, Karlsruhe
Dr. M. Eiswirth, Karlsruhe
Dipl.-Geol. T. Fauser, Karlsruhe
Prof. Dr.-Ing. E. Fecker, Karlsruhe
Prof. Dr. H. Hötzl, Karlsruhe
Dipl.-Geol. W. Kassebeer, Karlsruhe
Dipl.-Geol. A. Kienzle, Karlsruhe
Dipl.-Geol. B. Krauthausen, Berg / Pfalz
Dipl.-Geol. T. Liesch, Karlsruhe
R. Ohlenbusch, Karlsruhe
Dr. K. E. Roehl, Karlsruhe
Dipl.-Geol. S. Rogge, Karlsruhe
Dr. J. Rohn, Karlsruhe
Dipl.-Geol. E. Ruckert, Karlsruhe
Dr. C. Schnatmeyer, Trier
Dipl.-Geol. N. Umlauf, Karlsruhe
Dr. A. Wefer-Roehl, Karlsruhe
K. Witthüser, Karlsruhe
Dipl.-Geol. R. Zorn, Karlsruhe

Bodenkunde
Dr. J. Augustin, Müncheberg
Dr. A. Behrendt, Müncheberg
Dipl.-Ing. agr. U. Behrendt, Müncheberg
Prof. Dr. Dr. H.-P. Blume, Kiel
Prof. Dr. H.-R. Bork, Potsdam
Dr. C. Dalchow, Müncheberg
Dr. D. Deumlich, Müncheberg
Dipl.-Geoök. M. Dotterweich, Potsdam
Dr. R. Ellerbrock, Müncheberg
Prof. Dr. M. Frielinghaus, Müncheberg
Dr. R. Funk, Müncheberg
Dipl.-Ing. K. Geldmacher, Potsdam
Dr. H. Gerke, Müncheberg
Dr. K. Helming, Müncheberg
Dr. W. Hierold, Müncheberg
Dr. A. Höhn, Müncheberg
Dr. M. Joschko, Müncheberg
Dr. K.-Ch. Kersebaum
Dr. S. Koszinski, Müncheberg
Dr. P. Lentzsch, Müncheberg
Dr. L. Müller, Müncheberg
Dr. M. Müller, Müncheberg
Dr. T. Müller, Müncheberg
Dr. B. Münzenberger, Müncheberg
Dr. H.-P. Pior, Müncheberg
Dr. H. Rogasik, Müncheberg
Dr. U. Schindler, Müncheberg
Dipl.-Geoök. G. Schmittchen, Potsdam
Dr. W. Seyfarth, Müncheberg
Dr. M. Tauschke, Müncheberg
Dr. A. Ulrich, Müncheberg
Dr. O. Wendroth, Müncheberg
Dr. St. Wirth, Müncheberg

Fernerkundung
Prof. Dr. phil. M. Buchroithner, Dresden
Prof. Dr. E. Csaplovics, Dresden
Prof. Dr. C. Gläßer, Halle
Dr. G. Meinel, Dresden
Dr. M. Netzband, Dresden
Prof. Dr. H. Will, Halle

Geochemie
Prof. Dr. A. Altenbach, München
Prof. Dr. W. Altermann, München
Dr. St. Becker, Wiesbaden
Dr. A. Hehn-Wohnlich, Ottobrunn
P.D. Dr. St. Höltzl, München
Dr. M. Kölbl-Ebert, München
Dr. Th. Kunzmann, München
Prof. Dr. W. Loske, München
Dipl.-Geol. A. Murr, München
Dr. T. Rüde, München

Geodäsie
Dr.-Ing. G. Boedecker, München
Dr. W. Bosch, München
Dr. E. Buschmann, Potsdam
Prof. Dr. H. Drewes, München
Dr. D. Egger, München
Prof. Dr. B. Heck, Karlsruhe
Prof. Dr. K.-H. Ilk, Bonn
Dr. J. Müller, München
Dr. A. Nothnagel, Bonn
Prof. Dr. D. Reinhard, Dresden
Dr. Mirko Scheinert, Dresden
Dr. W. Schlüter, Wetzell
Dr. H. Schuh, München
Prof. Dr. G. Seeber, Hannover
Prof. Dr. M. H. Soffel, Dresden

Geomorphologie
Dipl. Geogr. K.D. Albert, Frankfurt / Main
Prof. Dr. W. Andres, Frankfurt / Main
Dipl. Geogr. P. Houben, Frankfurt / Main
Dr. K.-M. Moldenhauer, Frankfurt / Main
Dr. P. Müller-Haude, Frankfurt / Main
Dipl. Geogr. S. Nolte, Frankfurt / Main
Dr. H. Riedel, Wetter
Dr. J. B. Ries, Frankfurt / Main

Geophysik
Dr. G. Bock, Potsdam
Dr. H. Brasse, Berlin
Prof. Dr. P. Giese, Berlin
Prof. Dr. V. Haak, Potsdam
Prof. Dr. E. Hurtig, Potsdam
Prof. Dr. R. Meißner, Kiel
Prof. Dr. K. Millahn, Leoben, Österreich
Dr. F. R. Schilling, Potsdam
Prof. Dr. H. C. Soffel, München
Dr. W. Webers, Potsdam
Prof. Dr. J. Wohlenberg, Aachen

Geowissenschaft
Prof. Dr. J. Negendank, Potsdam

Historische Geologie / Paläontologie
Prof. Dr. W. Altermann, München
Dr. R. Becker-Haumann, Köln
Dr. R. Below, Köln
Dr. M. Bernecker, Erlangen
Dr. M. Bertling, Münster
Prof. Dr. W. Boenigk, Köln
Dr. A. Clausing, Halle
Dr. M. Grigo, Köln
Dr. K. Grimm, Mainz
Prof. Dr. Gursky, Clausthal-Zellerfeld
Dipl.-Geol. E. Haaß, Köln
Prof. Dr. H.-G. Herbig, Köln
Dr. I. Hinz-Schallreuther, Berlin
Dr. D. Kalthoff, Bonn
Prof. Dr. W. von Königswald, Bonn
Dr. habil R. Kohring, Berlin
E. Minwegen, Köln
Dr. F. Neuweiler, Göttingen
Dr. S. Noé, Köln
Dr. S Nöth, Köln
Prof. Dr. K. Oekentorp, Münster
Dr. S. Pohler, Köln
Dr. B. Reicherbacher, Karlsruhe
Dr. H. Tragelehn, Köln
Dr. S. Voigt, Köln
Dr. H. Wopfner, Köln

Hydrologie
Dr. H. Bergmann, Koblenz
Prof. Dr. K. Hofius, Boppard
Prof. Dr. H.-J. Liebscher, Koblenz
Dr. E. Wildenhahn, Vallendar
Dr. M. Wunderlich, Brey

Kartographie
Prof. Dr. J. Bollmann, Trier
Dipl. Geogr. T. Bräuninger, Trier
Prof. Dr. phil. M. Buchroithner, Dresden
Dr. G. Buziek, Hannover
Prof. Dr. W. Denk, Karlsruhe
Dr. D. Dransch, Berlin
Dipl. Geogr. H. Faby, Trier
Dr. K. Großer, Leipzig
Dipl. Geogr. F. Heidmann, Trier
Prof. Dr. K.-H. Klein, Wuppertal
Prof. Dr. W. Koch, Dresden
Prof. Dr. S. Meier, Dresden
Dipl. Geogr. A. Müller, Trier
Prof. Dr. J. Neumann, Karlsruhe
Prof. Dr. K. Regensburger, Dresden
Dipl.-Ing. Ch. Rülke, Dresden
Dr. W. Stams, Dresden
Prof. Dr. K.-G. Steinert, Dresden
Dr. P. Tainz, Trier
Dr. A.-D. Uthe, Berlin
Dipl. Geogr. W. Weber, Trier
Prof. Dr. I. Wilfert, Dresden
Dipl.-Ing. D. Wolff, Wuppertal

Kristallographie
Dr. K. Eichhorn, Karlsruhe
Prof. Dr. K. Hümmer, Karlsruhe
Prof. Dr. W. E. Klee, Karlsruhe
Dr. G. Müller-Vogt, Karlsruhe
Dr. E. Weckert, Karlsruhe
Prof. Dr. H.W. Zimmermann, Erlangen

Lagerstättenkunde
Dr. W. Hirdes, D-53113 Bonn
Prof. Dr. H. Flick, Marktoberdorf
Dr. T. Kirnbauer, Wiesbaden
Prof. Dr. W. Proschaska, Leoben, Österreich
Prof. Dr. E. F. Stumpfl, Leoben, Österreich
Prof. Dr. Thalhammer, Leoben, Österreich

Landschaftsökologie
Dipl. Geogr. St. Meier-Zielinski, Basel, Schweiz
Dipl. Geogr. S. Rolli, Basel, Schweiz
Dr. D. Rüetschi, Basel, Schweiz
Dr. D. Schaub, Frick, Schweiz
Dipl. Geogr. M. Schmid, Basel, Schweiz

Meteorologie und Klimatologie
Dipl. Met. K. Balzer, Potsdam
Dipl.-Met. W. Benesch, Offenbach
Prof. Dr. D. Etling, Hannover
Dr. U. Finke, Hannover
Prof. Dr. H. Fischer, Karlsruhe
Prof. Dr. M. Geb, Berlin
Prof. Dr. G. Groß, Hannover
Prof. Dr. Th. Hauf, Hannover
Dr. habil. D. Heimann,
Oberpfaffenhofen / Weßling
Dr. C. Lüdecke, München
Dipl. Met. H. Neumeister, Potsdam
Prof. Dr. H. Quenzel, München
Prof. Dr. U. Schmidt, Frankfurt / Main
Prof. Dr. Ch.-D. Schönwiese, Frankfurt / Main
Prof. Dr. W. Wehry, Berlin

Mineralogie
Prof. Dr. G. Strübel, Gießen

Ozeanographie
Prof. Dr. W. Alpers, Hamburg
Dr. H. Eicken, Fairbanks, Alaska, USA
Dr. H.-H. Essen, Hamburg
Dr. E. Fahrbach, Bremerhaven
Dr. K. Kremling, Kiel
Prof. Dr. J. Meincke, Hamburg
Dr. Th. Pohlmann, Hamburg
Prof. Dr. W. Zahel, Hamburg

Petrologie
Dr. T. Gayk, Köln
Dr. R. Hollerbach, Köln
Dr. R. Kleinschrodt, Köln
Dr. R. Klemd, Bremen
Dr. M. Schliestedt, Hannover
Prof. Dr. H.-G. Stosch, Karlsruhe

Partnervideos