Direkt zum Inhalt

Lexikon der Mathematik: arithmetisches Mittel

die zu n reellen Zahlen x1,…, xn durch

\begin{eqnarray}A({x}_{1},\ldots, {x}_{n}):=\frac{1}{n}({x}_{1}+\ldots +{x}_{n})\end{eqnarray}

definierte reelle Zahl. Sie hat die Eigenschaft

\begin{eqnarray}A(x,y)-x=y-A(x,y)\end{eqnarray}

für x, y, ∈, ℝ.

Für x < y ist x; < A(x, y) < y. Es gilt

\begin{eqnarray}A({x}_{1},\ldots, {x}_{n})={M}_{1}({x}_{1},\ldots, {x}_{n})\end{eqnarray}

für positive x1, …, xn, wobei Mt das Mittel t-ter Ordnung ist. Die Ungleichungen für Mittelwerte stellen u. a. das arithmetische Mittel in Beziehung zu den anderen Mittelwerten.

Lesermeinung

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

  • Die Autoren
- Prof. Dr. Guido Walz

Partnervideos