Direkt zum Inhalt

Lexikon der Mathematik: Auflösung von Singularitäten

ein eigentlicher birationaler Morphismus \(\tilde{X}\mathop{\to }\limits^{\sigma }X\) so, daß \(\tilde{X}\) ein reguläres Schema ist und \(\tilde{X}\backslash {\sigma }^{-1}(Z)\mathop{\to }\limits^{\sim }X\backslash Z\). Hierbei sei X ein reduziertes irreduzibles Noethersches Schema und ZX ein abgeschlossenes Unterschema derart, daß X \ Z ein reguläres ( Cartanscher Raum) Schema ist.

Die Existenz einer solchen Auflösung ist im allgemeinen nur für algebraische Varietäten über Körpern der Charakteristik 0 oder der Dimension ≤ 3 bewiesen, außerdem ist die Existenz bekannt für algebraische Schemata der Dimension ≤ 2 über ℤ. Man erhält eine solche Auflösung durch eine Folge von Aufblasungen, mit Zentrum im singulären Ort. Für reduzierte kompakte komplexe Räume gilt ein analoges Resultat.

Lesermeinung

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

  • Die Autoren
- Prof. Dr. Guido Walz

Partnervideos