Direkt zum Inhalt

Lexikon der Mathematik: Betti-Zahl

Anzahl der Elemente unendlicher Ordnung in einer Basis einer endlich erzeugten abelschen Gruppe.

Es sei G eine abelsche Gruppe. Dann heißt ein Erzeugendensystem \({\mathscr{A}}\) von G eine Basis von G, falls man jedes Element xG, x ≠ 1, eindeutig als Produkt \(x={a}_{1}^{{p}_{1}}\cdot {a}_{2}^{{p}_{2}}\cdots {a}_{n}^{{p}_{n}}\) darstellen kann, wobei 0 < pi ord(ai) gilt. Ist G eine endlich erzeugte abelsche Gruppe, so besitzt G eine endliche, das heißt aus endlich vielen Elementen bestehende Basis. Die Elemente dieser Basis können von endlicher oder von unendlicher Ordnung sein.

Dann heißt die Anzahl der Elemente unendlicher Ordnung in einer Basis von G die Betti-Zahl der Gruppe G.

Lesermeinung

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

  • Die Autoren
- Prof. Dr. Guido Walz

Partnervideos