Direkt zum Inhalt

Lexikon der Mathematik: krummlinige Koordinaten

Komponenten eines Vektors des ℝn bzgl. eines Koordinatensystems, dessen Koordinatenlinien (d. h. Linien, die sich ergeben, wenn man alle außer einer Koordinate festhält) nicht unbedingt Geraden bzgl. kartesischer Koordinaten sind.

Wichtige Beispiele krummliniger Koordinaten sind im ℝ2 Polarkoordinaten und im ℝ3 Kugelkoordinaten und Zylinderkoordinaten. Die Benutzung solcher Koordinatensysteme ist u. a. dann zweckmäßig, wenn die betrachteten Probleme bzw. Funktionen entsprechende Symmetrien aufweisen. Zum Beispiel werden krummlinige Koordinaten eingesetzt beim Berechnen von Integralen durch Transformation in ein Koordinatensystem, in dem sie leichter auszurechnen sind, wobei der Transformationssatz benutzt wird.

Lesermeinung

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

  • Die Autoren
- Prof. Dr. Guido Walz

Partnervideos