Direkt zum Inhalt

Lexikon der Mathematik: Orthogonalität von Wahrscheinlichkeitsmaßen

Singularität von Wahrscheinlichkeitsmaßen, die Eigenschaft zweier auf der σ-Algebra \({\mathfrak{A}}\) eines meßbaren Raumes \(\text{(}{\rm{\Omega }}\text{,}\,{\mathfrak{A}})\) definierter Wahrscheinlichkeitsmaße P und Q, daß eine Menge \(A\in {\mathfrak{A}}\) existiert, für die P(A) = 1 und \(Q({\unicode{x2201}}A)=1\) gilt. Sind P und Q orthogonal bzw. singulär, so schreibt man PQ.

Die Orthogonalität der Wahrscheinlichkeitsmaße P und Q bedeutet anschaulich, daß die gesamte Masse von P auf der Menge A und die gesamte Masse von Q auf dem Komplement \({\unicode{x2201}}A\) konzentriert ist.

In der Maßtheorie wird der Begriff der Orthogonalität bzw. Singularität allgemeiner für signierte Maße eingeführt.

Lesermeinung

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

  • Die Autoren
- Prof. Dr. Guido Walz

Partnervideos