Direkt zum Inhalt

Lexikon der Mathematik: Rellich-Theorem

lautet:

T(β) sei eine matrixwertige, analytische Funktion über einem Gebiet R der komplexen Ebene, das einen Abschnitt der reellen Achse enthält. Für β ∈ ℝ sei T (β) selbstadjungiert, λ0sei ein Eigenwert der Vielfachheit m von T(β0).

Dann gilt: Wenn β0reell ist, gibt es pm verschiedene Funktionen λ1(β), …, λp(β), die in einer Umgebung von β0einwertig und analytisch sind und alle Eigenwerte liefern.

Siehe auch Rellichsches Kriterium.

Lesermeinung

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

  • Die Autoren
- Prof. Dr. Guido Walz

Partnervideos