Direkt zum Inhalt

Lexikon der Mathematik: sternförmige Menge

eine Menge M ⊂ ℂ oder M ⊂ ℝn mit folgender Eigenschaft: Es existiert ein Punkt z0M derart, daß für alle zM die Verbindungsstrecke [z0, z] in M liegt. Der Punkt z0 heißt auch Zentrum von M.

Das Zentrum z0 von M ist im allgemeinen nicht eindeutig bestimmt, d. h. es können mehrere Zentren existieren. Ist z. B. M eine konvexe Menge, so ist jedes z0M ein Zentrum von M, d. h., jede konvexe Menge ist sternförmig. Sternförmige Mengen A sind zusammenziehbar, d. h. für sie ist die identische Abbildung AA eine nullhomotope Abbildung. Anschaulich bedeutet die Sternförmigkeit einer Menge, daß man vom Zentrum jeden Punkt der Menge „sehen“ kann.

Lesermeinung

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

  • Die Autoren
- Prof. Dr. Guido Walz

Partnerinhalte