Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Astrophysik: Keine exotische Materie in Neutronensternen

Theoretisch könnte im Kern der ultrakompakten Überreste von Sternexplosionen eine seltsame Materieform aus Elementarteilchen entstehen. Doch nun verpassen neue astronomische Messungen solchen Spekulationen einen Dämpfer.
Die Illustration zeigt ein energiereiches Ereignis im Weltraum.

Kein anderes bekanntes Objekt im Universum ist mit einem Neutronenstern vergleichbar. In diesen aus Supernovae hervorgegangenen Himmelskörpern ist die Masse eines Sterns auf den Durchmesser einer Großstadt zusammengepresst. Um sie herum und in ihnen spielen sich deswegen extreme physikalische Vorgänge ab. Einige Fachleute mutmaßen sogar, die unvorstellbaren Drücke im Inneren könnten besonders seltsame Materieformen hervorbringen. Doch es ist unmöglich, in Neutronensterne hineinzublicken, um das direkt zu untersuchen. Also müssen sich Astronominnen und Astronomen auf die Eigenschaften verlassen, die sie prinzipiell messen können, nämlich die Masse und Größe der Objekte.

Bloß ist es alles andere als einfach, den exakten Durchmesser von etwas zu bestimmen, das Tausende von Lichtjahren entfernt und nur wenige zehn Kilometer groß ist. Ein erster Durchbruch ist 2019 mit dem NASA- Instrument Neutron star Interior Composition Explorer (NICER) gelungen, das zwei Jahre zuvor auf der Internationalen Raumstation installiert worden war. Mit dem Röntgenteleskop hat ein Team um Coleman Miller von der University of Maryland den Durchmesser eines Neutronensterns namens J0030 bestimmt, der 1000 Lichtjahre von der Erde entfernt ist und 1,4 Sonnenmassen hat. Er ist etwa 26 Kilometer groß. Auf Basis weiterer NICER-Daten haben nun zwei Arbeitsgruppen, eine davon erneut um Coleman Miller, unabhängig voneinander eine entsprechende Analyse für einen anderen Neutronenstern durchgeführt – mit überraschendem Ergebnis …

Kennen Sie schon …

Spektrum der Wissenschaft – Unmögliches mit Quanten und Teilchen

»Unmögliches mit Quanten und Teilchen« nimmt Sie mit in die Welt der Quantenphänomene. Plasma-Labore widmen sich Themen vom Urknall bis zum Fusionsreaktor. Mehrere Experimente sollen der Unruh-Effekt demnächst nachweisen. Mit Lasern und kalten Atomen lassen sich manche Quantenphänomene auf größere Maßstäbe übertragen und somit extreme Phänomene eingehender untersuchen.

Spektrum - Die Woche – Die Kinder, denen die Nazis die Identität raubten

Kinder mit »gutem Blut« hatten im Nationalsozialismus keine Wahl: wer sich nicht eindeutschen lassen wollte, wurde zurückgelassen oder getötet. In der aktuellen Ausgabe der »Woche« beleuchten wir das Schicksal zehntausender verschleppter Kinder, die nie von ihrer wahren Herkunft erfahren haben.

Sterne und Weltraum – Pulsare

Messungen an Pulsaren enthüllen neuartige Gravitationswellen. Die wichtigsten Haloerscheinungen, die durch Lichtbrechung und Spiegelung an Eiskristallen entstehen, im Überblick. Was hat es mit den riesigen Gasblasen auf sich, die der Mitte unseres Milchstraßensystems zu entspringen scheinen? Wie gut lassen sich Doppelsterne im Amateurteleskop beobachten?

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Adhikari, D. et al.: Accurate determina­tion of the neutron skin thickness of 208Pb through parity-violation in electron scattering. Physical Review Letters 126, 2021

Miller, M. C. et al.: The radius of PSR J0740+6620 from NICER and XMM-Newton data. arXiv:2105.06979, 2021

Riley, T. E. et al.: A NICER view of the massive pulsar PSR J0740+6620 informed by radio timing and XMM-Newton spectroscopy. arXiv: 2105.06980, 2021

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.