Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Kernphysik: Das Proton-Paradoxon

Zwei ausgeklügelte Experimente lieferten verschiedene Werte für den Radius des Protons. Messfehler halten die Forscher mittlerweile für äußerst unwahrscheinlich. Sind sie auf ein bislang unbekanntes physikalisches Phänomen gestoßen?
Messung des Protonenradius

Das Proton müsste eigentlich längst perfekt verstanden sein: Es ist einer der Hauptbestandteile aller Materie, die uns umgibt, der Brennstoff der Sterne im Universum und der Kern des Wasserstoffatoms, des am besten untersuchten Atoms überhaupt. Untersuchungen des Protons und des Wasserstoffatoms lösten zudem vor über 100 Jahren die quantenphysikalische Revolution aus. Das Teilchen wurde in zahllosen Experimenten genauestens vermessen, und auch am Large Hadron Collider (LHC) des europäischen Teilchenforschungszentrums CERN bei Genf sind es Protonen, die wir bei höchsten Energien miteinander kollidieren lassen, um neue Teilchen wie das Higgs-Boson entstehen zu lassen.

Kann das Proton also keine großen Überraschungen mehr für uns bereit halten? Weit gefehlt. Zusammen mit anderen Physikern haben wir beide in den letzten Jahren die bislang präzisesten Messungen des Radius dieses Partikels vorgenommen. Anfangs erwarteten wir, durch die 20-fach höhere Genauigkeit dem lange bekannten Wert des Protonenradius lediglich die ein oder andere Nachkommastelle hinzuzufügen. Das war ein Irrtum. Vielmehr lieferten unsere beiden Experimente, bei denen unterschiedliche Messverfahren zum Einsatz kamen, zwei Werte, die deutlich voneinander abweichen: nämlich um mehr als das Fünffache der so genannten kombinierten Messunsicherheit. Die Wahrscheinlichkeit, dass dies nur ein Zufall ist, beträgt weniger als eins in einer Million.

So viel steht fest: Irgendetwas ist da faul. Entweder begreifen wir das Proton nicht so gut, wie wir dachten, oder wir verstehen die fundamentale Physik nicht, auf der unsere Experimente beruhen. Es ist, als hätten wir uns in eine neue Welt vorgewagt und wären auf unbekannte, völlig unerklärliche Phänomene gestoßen. ...

Kennen Sie schon …

Sterne und Weltraum – Highlights am Himmel: Die spektakulärsten Ereignisse des Jahres 2026

In dieser Ausgabe von »Sterne und Weltraum« haben wir wieder die spannendsten Beobachtungshighlights des kommenden Jahres für Sie zusammengestellt. Außerdem: Warum die Entstehung neutronenarmer Kerne im Sonnensystem Rätsel aufgibt und welcher neu entdeckte kernphysikalische Prozess die Lösung sein könnte. Wir zeigen, welche Störeffekte die Jagd nach Exoplaneten erschweren, und werfen einen Blick auf Earendel – den vermeintlich ältesten Stern des Universums, der sich vielleicht doch als Sternhaufen entpuppt. Jubiläum: Die Geschichte der traditionsreichen Sternwarte Sonneberg in Thüringen, die im Dezember 2025 ihr 100-jähriges Bestehen feiert.

Spektrum der Wissenschaft – Dunkle Kometen: Geisterfahrer im Sonnensystem

Eine kleine Gruppe von Himmelsobjekten sorgt für Rätselraten unter Fachleuten: Obwohl die Brocken keinen Schweif aus Gas und Staub aufweisen, bewegen sie sich wie Kometen. Was treibt diese Dunklen Kometen an? Könnten sie sogar Hinweise auf den Ursprung des Wassers auf der Erde liefern? Weitere Themen in dieser Ausgabe: Die Ökologin Katja Tielbörger und der Molekularbiologe Detlef Weigel diskutieren darüber, wie ein Kompromiss zur Neuregelung der Grünen Gentechnik aussehen könnte. Sie sind sich einig: Man muss das gesamte System betrachten. Angesichts des Internationalen Jahres der Quantenphysik gehen wir der Frage nach, warum selbst Physiker die Quantenmechanik nicht verstehen – und was ihre Formeln über die Wirklichkeit aussagen. Außerdem stellen wir Ihnen vor, was Mikrofossilien über die Zeitgenossen der Dinosaurier verraten, und wir präsentieren Ihnen die Farbenpracht des altägyptischen Tempels von Esna. Fünf Jahre arbeiteten Restauratoren an der Rekonstruktion. Das Ergebnis ist spektakulär.

Spektrum - Die Woche – Die Supersymmetrie ist am Ende

Die Supersymmetrie galt lange als Hoffnungsträger der Physik – nun steht sie vor dem Aus. In der neuen Ausgabe von »Die Woche« erfahren Sie, warum das Forschungsfeld umstrukturiert wird und welche neuen Wege die Teilchenphysik nun einschlägt.

  • Quellen

Antognini, A. et al.:Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen. In: Science 339, S. 417 - 420, 25. Januar 2013

Bernauer, J. C., et al.:High-Precision Determination of the Electric and Magnetic Form Factors of the Proton. In: Physical Review Letters 105, Art.-Nr. 242001, 10. Dezember 2010

Pohl, R. et al.:The Size of the Proton. In: Nature 466, S. 213 - 213, 8. Juli 2010

Pohl, R. et al.:Muonic Hydrogen and the Proton Radius Puzzle. In: Annual Review of Nuclear and Particle Science 63, S. 175 - 204, Oktober 2013

Schreiben Sie uns!

6 Beiträge anzeigen

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.