Unser Universum hat vielleicht mit einem "Big Bounce" begonnen – mit einem großen Sprung oder Rückprall. Der Urknall wäre demnach die explosive Folge einer noch früheren Implosion, verursacht durch exotische Quanteneffekte.
Dass es Atome gibt, ist heute so selbstverständlich, dass wir uns kaum vorstellen können, wie radikal diese Idee einst war. Als die Naturforscher vor zwei Jahrhunderten den antiken Atombegriff wieder aufnahmen, dachten sie nicht im Traum daran, etwas so Kleines je beobachten zu können – und viele bezweifelten seinen wissenschaftlichen Charakter. Doch allmählich mehrten sich die Indizien für den atomaren Aufbau der Materie, bis Albert Einstein schließlich 1905 damit die brownsche Bewegung – das zufällige Zittern von Stäubchen in einer Flüssigkeit – erklären konnte. Dennoch dauerte es noch 20 Jahre, bis die Physiker mit der Quantenmechanik eine Theorie der Atomstruktur entwickelten, und nochmals 30 Jahre, bis der deutsch-amerikanische Physiker Erwin Wilhelm Müller einzelne Atome abzubilden vermochte. Heute beruhen ganze Industriezweige auf den charakteristischen Eigenschaften atomarer Materie.
Einen ähnlichen Weg verfolgen Physiker neuerdings, wenn sie die Zusammensetzung von Raum und Zeit verstehen wollen. Das Verhalten der Raumzeit legt nahe, dass ihr eine körnige Struktur zu Grunde liegt – entweder ein Mosaik aus raumzeitlichen "Atomen" oder eine andere filigrane Struktur. Materielle Atome sind die kleinsten unteilbaren Einheiten der chemischen Verbindungen, und ebenso bilden die hypothetischen Raumatome die kleinsten Entfernungseinheiten. Vermutlich sind sie nur 10– 35 Meter groß – viel zu klein für die Auflösung der stärksten Instrumente, die heute bei 10– 18 Meter Halt machen. Darum zweifeln viele Forscher, ob die Idee einer atomar strukturierten Raumzeit überhaupt wissenschaftlich genannt werden darf. Doch andere suchen hartnäckig nach Möglichkeiten, solche Atome indirekt nachzuweisen. Am meisten verspricht dabei...
Spektrum - Die Woche – Von der Entropie zur Quantengravitation
Die Verbindung von Schwerkraft und Quanten ist ein zentrales Rätsel der Physik. Die Informationstheorie liefert Antworten – und vielleicht den Schlüssel zur Quantengravitation. Außerdem: Eine Revolution des Bauens? Carbonbeton benötigt im Vergleich zu Stahlbeton nur einen Bruchteil des Materials.
Sterne und Weltraum – Raumzeit: Experimente zur Quantennatur
Die Relativitätstheorie Albert Einsteins ist das Meisterwerk zur Beschreibung der Schwerkraft. Seit Jahrzehnten steht aber die Frage im Raum, ob die Gravitation auf submikroskopischen Längenskalen modifiziert werden muss. Gibt es quantenhafte Austauschteilchen, die Gravitonen? In unserem Titelbeitrag stellen wir Überlegungen vor, wie man experimentell eine Quantennatur der Raumzeit testen könnte. Im zweiten Teil unseres Artikels zur Urknalltheorie beleuchten wir alternative Ansätze zur Dunklen Energie: das Local-Void- und das Timescape-Modell. Außerdem: Teil zwei unserer Praxistipps für die Astrofotografie mit dem Smartphone – Mond und Planeten im Fokus, die Ordnung im Chaos des Dreikörperproblems und woher stammen erdnahe Asteroiden?
Spektrum der Wissenschaft – Eine Theorie von allem: Lassen sich Quantenphysik und Schwerkraft vereinen?
Lassen sich Quantenphysik und Schwerkraft vereinen? In der aktuellen Ausgabe der PMT haben wir Beiträge für Sie zusammengestellt, in denen Forscherinnen und Forscher über die Ergebnisse ihrer Suche nach einer fundamentalen Theorie unserer Welt berichten. Entstanden ist eine erkenntnisreiche Sammlung an Beiträgen über die Quantennatur der Raumzeit, denkbaren Experimenten zum Nachweis von Gravitonen, Schwarzen Löchern, der Theorie der Quantengravitation, teleparalleler Gravitation und vielem mehr. Lesen Sie, welche Fortschritte es in den letzten Jahren gab, die Gesetze der Quantenwelt mit den geometrischen Konzepten von Raum und Zeit zu vereinigen, und welche Hürden dabei noch zu überwinden sind.
Schreiben Sie uns!
2 Beiträge anzeigen