Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten von Sterne und Weltraum frei zugänglich.

Nukleosynthese: Der Ursprung der Elemente. Teil 2: Durch Neutroneneinfang zu den schwersten Atomkernen

Sterne sind kosmische Hochöfen: Sie produzieren die Stoffe, aus denen wir und alle Materie in unserer Umgebung bestehen. Doch die während ihrer Entwicklung ablaufenden ­Kernfusionen können die Herkunft der schwersten Elemente nicht erklären. Die aktive ­Forschung im Zusammenspiel von Kern- und Astrophysik hat die explosiven Wege erkundet, denen wir die Hälfte der Elemente von Eisen bis Blei und Wismut und alle noch schwereren Elemente verdanken.
Neutronensterne

Etwa 98 Prozent aller sichtbaren Materie im heutigen Universum bestehen aus Wasserstoff und Helium, den beiden leichtesten Elementen. Alle übrigen Atomsorten machen nur einen kleinen Anteil aus, sind aber für unsere Lebensgrundlagen von existenzieller Bedeutung. Woher diese schweren Elemente stammen, war lange Zeit unbekannt. Erst in der ersten Hälfte des 20. Jahrhunderts waren verschiedene Teildisziplinen der Physik so weit entwickelt, dass die Wissenschaftler in kleinen Schritten einer Lösung dieser Frage näher kamen.

Eine wichtige Erkenntnis gelang in den 1930er Jahren, als Physiker wie Hans Bethe (1906 – 2005) und Carl Friedrich von Weizsäcker (1912 – 2007) die Energiequelle unserer Sonne entschlüsselten: In ihrem Innern verschmelzen bei hohen Temperaturen und Drücken die Kerne von Wasserstoff zu Helium. Mit solchen Kernfusionsreaktionen, bei denen Energie frei wird, ist auch der Aufbau von schwereren Elementen bis hin zum Eisen zu erklären.

Aber Elemente, die noch schwerer sind als Eisen, woher stammen sie? …

Dezember 2018

Dieser Artikel ist enthalten in Sterne und Weltraum Dezember 2018

Kennen Sie schon …

45/2018

Spektrum - Die Woche – 45/2018

In dieser Ausgabe widmen wir uns Flüssen, der Teilchenphysik und den Pflanzen.

November 2018

Sterne und Weltraum – November 2018

Ursprung der Elemente - Relativistische Effekte im Zentrum der Milchstraße - Sojus Panne - Vierfach-Quasar - Smartphone-App: Planetensysteme selber basteln

40/2018

Spektrum - Die Woche – 40/2018

In dieser Ausgabe widmen wir uns den Nobelpreisen und der Kernfusion.

Lesermeinung

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Leserzuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Leserzuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmer sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Lesermeinungen können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Literaturhinweise

Burbidge, E. M. et al.: Synthesis of the Elements in Stars. In: Review of Modern Physics 29, S. 547 – 654, 1957

Cameron, A. G. W.: Nuclear Reactions in Stars and Nucleogenesis. In: Publications of the Astronomical Society of the Pacific 69, S. 201 – 222, 1957

Käppeler, F. et al.: The s-Process: Nuclear Physics, Stellar Models, and Observations. In: Review of Modern Physics 83, S. 157 – 193, 2011

Martinez-Pinedo, G.: Supernova Evolution and Nucleosynthesis. In: Physik Journal, Nr. 8–9/2008, S. 51 – 56

Martinez-Pinedo, G. et al.: Der Beginn einer Multimessenger-Ära. In: Physik Journal, Nr. 12/2017, S. 20 – 22

Rosswog, S. et al.: Detectability of Compact Binary Merger Macronovae. In: Classical and Quantum Gravity 34, 104001, 2017

Thielemann, F.-K. et al.: Nucleosynthesis in Supernovae. In: Space Science Reviews 214:62, 2018

Winteler, C. et al.: Magnetorotationally Driven Supernovae as the Origin of Early Galaxy r-Process Elements? In: The Astrophysical Journal Letters 750, L22, 2012

Wu, M.-R. et al.: Production of the Entire Range of r-Process Nuclides by Black Hole Accretion Disc Outflows from Neutron Star Mergers. In: Monthly Notices of the Royal Astronomical Society 463, S. 2323 – 2334, 2016