Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten von Spektrum der Wissenschaft frei zugänglich.

Materialwissenschaft: Flüssigkristalle enthüllen Quanten-Drehmoment

Eine seit mehreren Jahrzehnten gehegte Vermutung haben Forscher nun im Experiment mit Flüssigkristallen bestätigt: Quantenphysikalische Schwankungen können eine mechanische Drehung hervorrufen, das so genannte Casimir-Drehmoment.
Quanten-DrehmomentLaden...

Nach den Regeln der Quantenphysik ist selbst der leere Raum von schwankenden elektro­magnetischen Feldern erfüllt. Das demonstriert ein als Casimir-Effekt bezeichnetes Phänomen, bei dem zwei Metallplatten nahe beieinander positioniert sind. In dem Raum zwischen ihnen sind andere Quantenfluktuationen möglich als außerhalb, und dadurch entsteht eine Kraft, welche die Platten verschiebt. 1972 haben Theoretiker außerdem vorhergesagt, dass die Fluktuationen unter Umständen ebenso einen Dreheffekt erzeugen könnten, also ein Drehmoment. Das wäre in »optisch anisotropen« Materialien der Fall. Deren op­tische Eigenschaften hängen von der Richtung eines hindurchlaufenden Lichtstrahls ab. Forscher um David Somers von der University of Maryland haben dieses Casimir-Drehmoment nun mit Hilfe von Flüssigkristallen nachgewiesen. Die Entdeckung könnte bei der Entwicklung komplexer mechanischer Geräte im Mikro- und Nanometerbereich helfen.

Ursprünglich hat der Niederländer Hendrik Casimir 1948 den Effekt für zwei ideale Metallplatten theoretisch vorhergesagt. In den 1950er Jahren haben Physiker das Konzept auf reale Materialien übertragen, etwa auf konventionelle Metalle und als Dielek­trika bezeichnete elektrische Isola­toren. Die Erklärung für den Casimir-­Effekt basiert auf der Anzahl der möglichen Quanten- und Temperaturfluktuationen zwischen den Materia­lien. Innerhalb der Grenzen können weniger Schwankungen auftreten als außerhalb, daher entsteht netto eine geringe Kraft. Diese ist maximal anziehend, wenn die begrenzenden Objekte identisch sind, und wird kleiner – oder kann sogar abstoßend wirken –, wenn sich die Barrieren in ihren elektrischen Eigenschaften oder ihrer Form unterscheiden ...

April 2019

Dieser Artikel ist enthalten in Spektrum der Wissenschaft April 2019

Kennen Sie schon …

50/2018

Spektrum - Die Woche – 50/2018

In dieser Ausgabe widmen wir uns dem Prokrastinieren, dem All und Quantencomputern.

48/2018

Spektrum - Die Woche – 48/2018

In dieser Ausgabe widmen wir uns Kaminöfen, der Quantenphysik und der Erziehung.

47/2018

Spektrum - Die Woche – 47/2018

In dieser Ausgabe widmen wir uns Gärten, der Quantenmechanik und dem Geschmackssinn.

Lesermeinung

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Leserzuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Leserzuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmer sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Lesermeinungen können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quelle

Somers, D. A. T. et al.: Measurement of the Casimir torque. Nature 564, 2018