Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

KOSMOLOGIE: Gravitationswellen nachgewiesen

Forscher der internationalen LIGO-Virgo-Kollaboration haben erstmals Gravitationswellen direkt ­gemessen. Damit bestätigten sie das letzte der vier großen Postulate der allgemeinen Relativitäts­theorie von Albert Einstein – und stoßen ein völlig neues Fenster zum Universum auf.
Gravitationswellen, erzeugt durch zwei Schwarze Löcher, die sich wie Doppelsterne umkreisen

Als Bruce Allen am 14. September 2015 kurz vor der Mittagspause ­seine E-Mails durchsah, konnte er es erst nicht fassen: Die beiden LIGO-Detek­toren in den USA sollen das Signal von Gravitationswellen gemessen haben? Mit seiner Arbeitsgruppe in Hannover ist der Direktor am Max-Planck-Institut für Gravitationsphysik maßgeblich an der Datenanalyse aller Detektoren des weltweiten Netzwerks beteiligt. Zwei seiner Mitarbeiter, Marco Drago und Andrew Lundgren, hatten das Signal als Erste auf ihrem Bildschirm bemerkt. Als es eintraf, war es in den USA Nacht, und die Kollegen dort schliefen.

"Es war selbst mit dem bloßen Auge so deutlich in den Rohdaten zu erkennen und sah so perfekt aus, dass wir anfangs Zweifel hatten, dass es echt war", erinnert sich Allen. "Wir glaubten zunächst, jemand könnte ein Testsignal in die Detektoren eingespeist und dann vergessen haben, uns das mitzuteilen." Auf diese Weise überprüfen die Physiker nämlich regelmäßig, ob alle Instrumentenkomponenten und Datenanalyse­mechanismen wie gewünscht funktionieren. Doch nach eingehender Untersuchung war klar: Das Signal GW 150914 erreichte uns tatsächlich aus einer fernen Galaxie. Vor mehr als einer Milliarde Jahren waren dort zwei Schwarze Löcher ineinandergestürzt und miteinander verschmolzen.

Gravitationswellen entstehen, so sagt es die allgemeine Relativitätstheorie voraus, wenn sich Materie beschleunigt bewegt. Der Effekt ist umso stärker, je massereicher und kompakter die Objek­te sind und je schneller sie sich bewegen. So versetzen etwa Supernova-Explosionen, zwei miteinander verschmelzende Neutronensterne oder eben Schwarze Löcher die Raumzeit in Schwingung. Dennoch sind auch Gravitationswellen, wie sie von solchen turbulenten Ereignissen zu erwarten sind, extrem schwach – eine Herausforderung für die Messtechnik! ...

Kennen Sie schon …

Spektrum - Die Woche – Von der Entropie zur Quantengravitation

Die Verbindung von Schwerkraft und Quanten ist ein zentrales Rätsel der Physik. Die Informationstheorie liefert Antworten – und vielleicht den Schlüssel zur Quantengravitation. Außerdem: Eine Revolution des Bauens? Carbonbeton benötigt im Vergleich zu Stahlbeton nur einen Bruchteil des Materials.

Sterne und Weltraum – Raumzeit: Experimente zur Quantennatur

Die Relativitätstheorie Albert Einsteins ist das Meisterwerk zur Beschreibung der Schwerkraft. Seit Jahrzehnten steht aber die Frage im Raum, ob die Gravitation auf submikroskopischen Längenskalen modifiziert werden muss. Gibt es quantenhafte Austauschteilchen, die Gravitonen? In unserem Titelbeitrag stellen wir Überlegungen vor, wie man experimentell eine Quantennatur der Raumzeit testen könnte. Im zweiten Teil unseres Artikels zur Urknalltheorie beleuchten wir alternative Ansätze zur Dunklen Energie: das Local-Void- und das Timescape-Modell. Außerdem: Teil zwei unserer Praxistipps für die Astrofotografie mit dem Smartphone – Mond und Planeten im Fokus, die Ordnung im Chaos des Dreikörperproblems und woher stammen erdnahe Asteroiden?

Spektrum der Wissenschaft – Eine Theorie von allem: Lassen sich Quantenphysik und Schwerkraft vereinen?

Lassen sich Quantenphysik und Schwerkraft vereinen? In der aktuellen Ausgabe der PMT haben wir Beiträge für Sie zusammengestellt, in denen Forscherinnen und Forscher über die Ergebnisse ihrer Suche nach einer fundamentalen Theorie unserer Welt berichten. Entstanden ist eine erkenntnisreiche Sammlung an Beiträgen über die Quantennatur der Raumzeit, denkbaren Experimenten zum Nachweis von Gravitonen, Schwarzen Löchern, der Theorie der Quantengravitation, teleparalleler Gravitation und vielem mehr. Lesen Sie, welche Fortschritte es in den letzten Jahren gab, die Gesetze der Quantenwelt mit den geometrischen Konzepten von Raum und Zeit zu vereinigen, und welche Hürden dabei noch zu überwinden sind.

  • Quellen

Abbott, B. P. et al.:Observation of Gravitational Waves from a Binary Black Hole Merger. In: Physical Review Letters 116, 2016

Schreiben Sie uns!

1 Beitrag anzeigen

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.