Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten von Spektrum der Wissenschaft frei zugänglich.

Physik: Kausalität in der Quantenwelt

Ein Ereignis ist stets entweder die Ursache oder die Wirkung eines anderen – so lautet ein ehernes Prinzip der ­Physik. Doch auf Quantenebene trifft das nicht immer zu.
DominoeffektLaden...

Das Prinzip von Ursache und Wirkung ist uns seit der Kindheit vertraut: Wenn man den ersten Dominostein in einer fein säuberlich aufgestellten Reihe antippt, fallen mit einem befriedigenden Rattern innerhalb weniger Sekunden nacheinander alle Steine um. Der Domino­effekt macht das Konzept der Kausalität greifbar, das überall in Wissenschaft und Alltag tief verwurzelt ist. Ereignis B, das Umkippen des letzten Dominosteins, ist eine Auswirkung von Ereignis A, dem Fallen des ersten Steins. B tritt erst nach A ein und nur dann, wenn A geschieht. Egal, ob zuerst der Stein ganz links in der Dominoreihe umkippt und somit das rechte Ende zuletzt oder ob wir ganz rechts beginnen und als letzter Stein der linke fällt, ein Ereignis muss das erste gewesen sein.

In der Quantenwelt gelten andere Regeln. Manchmal lässt sich nicht sagen, ob nun A vor B stattgefunden hat oder ob B vor A kam. Und zwar nicht, weil diese Information aus der Apparatur irgendwie nicht ausgelesen werden könnte oder besonders gut versteckt wäre. Sie existiert einfach nicht. Die Quantenphysik erlaubt die Überlagerung beider Abläufe, eine »Superposition«. Das ist so, als würden die Dominosteine gleichzeitig sowohl von links nach rechts als auch von rechts nach links fallen.

Bei Experimenten mit einem einzelnen Lichtteilchen zeigten unsere beiden Wiener Arbeitsgruppen 2015, dass es unmöglich sein kann, zu sagen, in welcher Reihenfolge das Photon durch verschiedene Operationen gegangen ist, also ob von A nach B oder von B nach A. Ähnliche Experimente hat 2017 ein Team um Kevin Resch an der kanadischen University of Waterloo zusammen mit dem Theoretiker Robert Spekkens vom benachbarten Peri­meter Institute for Theoretical Physics durchgeführt. Die Physiker überlagerten nicht nur zwei Abläufe, sondern ganz verschiedene Zusammenhänge. So erzeugten sie beispielsweise eine Quantenmischung aus einer direkten
Ursache-Wirkungs-Beziehung – wie bei den Dominosteinen – und einer gemeinsamen Ursache-Beziehung. Für letztere ist eine klassische Analogie ein Regentag. Dieser kann zu üppigeren Wiesen, aber auch zum erhöhten Verkauf von Gummistiefeln führen. Schuhnachfrage und Pflanzenwachstum hängen jedoch nicht direkt voneinander ab. Die kanadischen Wissenschaftler haben es mit einem trickreichen Aufbau geschafft, mehrere solche grundverschiedenen Szenarien zu überlagern ...

April 2019

Dieser Artikel ist enthalten in Spektrum der Wissenschaft April 2019

Kennen Sie schon …

Mai 2019

Sterne und Weltraum – Mai 2019

100 Jahre Lichtablenkung – Neue Welten – Ein Rückblick auf die ersten 57 Jahre »SuW« – Das Lebenselixier des Hobbyastronomen

Topologie - Wie abstrakte Mathematik unsere Welt prägt

Spektrum Kompakt – Topologie - Wie abstrakte Mathematik unsere Welt prägt

Was unterscheidet eine Tasse von einem Donut? Nichts - aus Sicht der Topologie. Denn die beiden Formen lassen sich ohne Zerreißen ineinander umwandeln. Nur ein abstraktes Konzept? Nein: Die mathematische Disziplin dient Physikern dazu, die exotische Welt der topologischen Materialien zu beschreiben.

50/2018

Spektrum - Die Woche – 50/2018

In dieser Ausgabe widmen wir uns dem Prokrastinieren, dem All und Quantencomputern.

Lesermeinung

2 Beiträge anzeigen

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Leserzuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Leserzuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmer sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Lesermeinungen können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Chiribella, G. et al.: Quantum computations without definite causal structure. Physical Review A 88, 2013

Guérin, P. A. et al.: Exponential communication complexity advantage from quantum superposition of the direction of communication. Physical Review Letters 117, 2016

Oreshkov, O. et al.: Quantum correlations with no causal order. Nature Communications 3, 2012

Procopio, L. M. et al.: Experimental superposition of orders of quantum Gates. Nature Communications 6, 2015

Rubino, G. et al.: Experimental verification of an indefinite causal order. Science Advances 3, 2017

Zych, M. et al.: Bell’s theorem for temporal order. arXiv 1708.00248, 2018