Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten von Spektrum der Wissenschaft frei zugänglich.

Mathematische Unterhaltungen: Kettenwurzeln

Wenn man Wurzeln aus Wurzeln aus Wurzeln zieht, kann diese Art der Wurzelbehandlung gut enden? Das kommt ganz darauf an.
KettenwurzelnLaden...

Wie viel ist \[\sqrt{1+ 2\sqrt{1+ 3\sqrt{1+ 4\sqrt{1 + 5\sqrt{1+ \dots}}}}} ?\]

Diese unendliche Kettenwurzel wirkt auf den ersten Blick ungeheuer abschreckend. Man soll eine Wurzel aus etwas ziehen, das wieder eine Wurzel enthält, unter der ein weiteres Wurzelzeichen steckt und so weiter bis ins Unendliche, wie die Pünktchen andeuten. Wie soll das gehen, so dass am Ende eine Zahl als Ergebnis herauskommt? ...

Februar 2019

Dieser Artikel ist enthalten in Spektrum der Wissenschaft Februar 2019

Kennen Sie schon …

Highlights 2/2013

Spektrum der Wissenschaft – Highlights 2/2013: Das Unendliche

Ist das Unendliche in der Mathematik paradox? • Das Unendliche in der Geometrie • Die Bewegungslehre im 17. Jahrhundert • Das Unendliche - Prüfstein des Konstruktivismus • Das unendlich Kleine in der Physik • Braucht die Arithmetik das Unendliche?

Lesermeinung

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Leserzuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Leserzuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmer sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Lesermeinungen können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Herschfeld, A.: On Infinite Radicals. In: The American Mathematical Monthly 42, S. 419–429, 1935

Lesher, D., Lynd, C. D.: Convergence Results for the Class of Periodic Left Nested Radicals. In: Mathematics Magazine 89, S. 319–335, 2016

Lynd, C. D., Sharpe, J. W.: Sequences Generated by Powers of the k-th-order Fibonacci Recurrence Relation. In: The American Mathematical Monthly 125, S. 443–446, 2018

Zimmerman, S., Ho, C.: On Infinitely Nested Radicals. In: Mathematics Magazine 81, S. 3–15, 2008

Die Ramanujan-Kettenwurzel, Aufgabe

Die Ramanujan-Kettenwurzel, Lösung

Jamie Johnson, Tom Richmond: Continued Radicals

Brian Thomas: On infinitely nested radicals. Paraphrase von Zimmerman/Ho.

Pierluigi Vellucci, Alberto Maria Bersani: New formulas for \(\pi\) involving infinite nested square roots and Gray code.