Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Informatik: Programm mit Köpfchen

Künstliche neuronale Netze arbeiten mit einem Mechanismus, der dem menschlichen Gehirn nicht zur Verfügung steht. Um die Geheimnisse des Lernens zu lüften, suchen Forscher und Forscherinnen nach biologisch plausiblen Alternativen.

Deep Learning ist heute aus Anwendungen künstlicher Intelligenz (KI) kaum wegzudenken: Ihm verdanken wir es, dass Siri gesprochene Befehle versteht oder Computer eigenständig Kunstwerke erschaffen. Doch das war nicht immer so. Als einige Informatiker 2007 bei einer renommierten Konferenz zu künstlicher Intelligenz einen Workshop über tiefe neuronale Netzwerke vorschlugen, lehnten die Veranstalter prompt ab. Man wollte dem damals belächelten Randgebiet nicht zu viel Platz einräumen.

Die Interessenten organisierten daraufhin ein inoffizielles Meeting, an dem unter anderem der kognitive Psychologe und Informatiker Geoffrey Hinton von der University of Toronto teilnahm. Er wirkte an einigen der größten Durchbrüche im Bereich tiefer neuronaler Netze mit. Seinen Vortrag begann er mit einem Scherz: »Vor etwa einem Jahr kam ich zum Abendessen nach Hause und sagte: ›Ich glaube, ich habe endlich herausgefunden, wie das Gehirn funktioniert‹ – woraufhin meine 15-jährige Tochter seufzte: ›Oh, Dad, nicht schon wieder.‹« Das Publikum lachte. Hinter der Witzelei verbarg sich jedoch ein ernst gemeintes Ziel: Er will mit Hilfe von KI das Gehirn verstehen.

Heute spielen tiefe neuronale Netze eine zentrale Rolle in der KI-Forschung. Zu einem großen Teil verdanken sie das einem bestimmten Algorithmus, genannt »Backpropagation« (was übersetzt etwa »Fehlerrückführung« bedeutet). Er ermöglicht es Programmen, anhand von Beispieldaten zu lernen. Dank des Berechnungsverfahrens können Computer Bilder klassifizieren, Sprache verstehen und übersetzen, die Umgebung für selbstfahrende Autos erkennen und zahlreiche andere Aufgaben meistern. Dass unser Gehirn Informationen nach einem ähnlichen Muster wie der Algorithmus verarbeitet, halten Fachleute jedoch für höchst unwahrscheinlich…

Kennen Sie schon …

Spektrum - Die Woche – Wo Bäume mehr schaden als nützen

Drei Milliarden neue Bäume in der EU, zehn Milliarden in den USA, 70 Milliarden in China. Doch die ambitionierten Ziele für Aufforstungen könnten lokale Ökosysteme und Tierbestände gefährden. Außerdem in der aktuellen »Woche«: wieso der Hype um ultradünne Halbleitermaterialien berechtigt ist.

Spektrum der Wissenschaft – Das Geheimnis der Dunklen Energie

Seit ihrer Entdeckung ist der Ursprung der Dunklen Energie rätselhaft. Neue Teleskope und Theorien sollen Antworten geben. Außerdem: Mit DNA-Spuren aus Luft oder Wasser lässt sich die Verbreitung verschiedenster Arten störungsfrei erfassen. Lassen sich riesigen Süßwasservorkommen, die unter mancherorts unter dem Meeresboden liegen, als Reserven nutzen? RNA-Ringe sind deutlich stabiler als lineare RNA-Moleküle und punkten daher als Arzneimittel der nächsten Generation. Ein Mathematiker ergründete auf Vanuatu, wie die Sandzeichnungen der Bewohner mit mathematischen Graphen zusammenhängen.

Gehirn&Geist – Zucker als Droge - Wie Süßes unser Gehirn beeinflusst

Auch Erwachsene können Süßem nur schwer widerstehen. Warum wirkt Zucker wie eine Droge und wie beeinflusst Süßes unser Gehirn? Lässt sich dagegen etwas machen? Außerdem: Warum schwindeln manche Menschen ständig, wie kann man solchen pathologischen Lügnern helfen? Manchmal ist es nicht so leicht zu entscheiden, ob wir etwas wirklich sehen oder es uns nur vorstellen. Wie unterscheidet unser Gehirn zwischen Realität und Einbildung? Manche Menschen können längerfristige kognitive Probleme nach einer Krebstherapie haben. Was weiß man über das so genannte Chemobrain, was kann Linderung verschaffen? Dating-Apps ermöglichen es, Beziehungen mit einem Klick zu beenden und plötzlich unsichtbar zu sein. Dieses Ghosting kann für die Opfer sehr belastend sein.

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Lillicrap, T. P. et al.: Random synaptic feedback weights support error backpropagation for deep learning. Nature Communications 7, 2016

Millidge, B. et al.: Predictive coding approximates backpropagation along arbitrary computation graphs. ArXiv 2006.04182, 2020

Nayebi, A. et al.: Identifying learning rules from neural network observables. ArXiv 2010.11765v2, 2020

Scellier, B., Bengio, Y.: Equilibrium propagation: Bridging the gap between energy-based models and backpropagation. Frontiers in Computational Neuroscience, 2017

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.