Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Mathematische Unterhaltungen: Nichtperiodische Parkettkunst

Was Physikern als Modellstruktur für Quasi­kristalle dient, machen sich Künstler zu Nutze, um aus der Mischung von Regelhaftigkeit und Undurchschaubarkeit besondere Effekte zu erzielen.
Ein Penrose-CartwheelLaden...

Einige Mathematiker haben sich doch tatsächlich in die fünfte Dimension begeben, um von diesem – sagen wir herausgehobenen – Standpunkt aus etwas ganz gewöhnlich Zweidimensionales zu studieren: die nichtperiodischen Pflasterungen der Ebene mit dieser seltsamen fünfzähligen Symmetrie, die unter dem Namen »Penrose-Pflasterungen« berühmt geworden sind. Der Umweg erweist sich als sehr elegant und öffnet das Tor zu einer umfassenden Theorie der nichtperiodischen Ordnung; zu allem Überfluss kann man auf diesem Weg Tapetenfunktionen konstruieren, die einer echten Pflasterung schon sehr nahekommen. Aber geht es vielleicht auch etwas bodenständiger?

Es geht. Zwei mathematische Hilfsmittel, die ohne expliziten Rückgriff auf höhere Dimensionen auskommen, liefern eine Fülle von Ergebnissen. Das eine ist unter dem Stichwort »Anlegeregeln« bekannt, das andere unter den Namen »Inflation«, »Deflation« und »Substitution«; jedes für sich beschreibt einen Teilaspekt des Werkzeugs.

Nichtperiodische Pflasterungen sind einerseits irgendwie anarchisch in dem Sinn, dass man sich nie darauf verlassen kann, was als Nächstes kommt. Andererseits sind sie überaus regelmäßig, indem dieselben Elemente und auch dieselben Zusammensetzungen aus Elementen immer wieder vorkommen. Dieses Spannungsfeld zwischen Ordnung und Chaos eröffnet auch Künstlern reizvolle Möglichkeiten …

Juli 2019

Dieser Artikel ist enthalten in Spektrum der Wissenschaft Juli 2019

Kennen Sie schon …

Juni 2019

Spektrum der Wissenschaft – Juni 2019

In dieser Ausgabe beschäftigt sich Spektrum der Wissenschaft mit der tropischen Geometrie. Außerdem im Heft: Der Weg zur Mondstation, Antarktische Gletscher vor dem Kollaps und die Erfindung des Kriegs.

08/2019

Spektrum - Die Woche – 08/2019

In dieser Ausgabe widmen wir uns dem Tempolimit, Stickoxiden und der Mathematik.

Topologie - Wie abstrakte Mathematik unsere Welt prägt

Spektrum Kompakt – Topologie - Wie abstrakte Mathematik unsere Welt prägt

Was unterscheidet eine Tasse von einem Donut? Nichts - aus Sicht der Topologie. Denn die beiden Formen lassen sich ohne Zerreißen ineinander umwandeln. Nur ein abstraktes Konzept? Nein: Die mathematische Disziplin dient Physikern dazu, die exotische Welt der topologischen Materialien zu beschreiben.

Lesermeinung

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Leserzuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Leserzuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmer sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Lesermeinungen können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Fang, F. et al.: Methods for calculating empires in quasicrystals. Crystals 7, 2017

Gaenshirt, U., Willsch, M.: The local controlled growth of a perfect Cartwheel-type tiling called the quasiperiodic succession. Philosophical Magazine 87, 2007

Senechal, M.: The Mysterious Mr. Ammann. The Mathematical Intelligencer 26, September 2004

Steurer, W., Arlitt, S.: Kurt Bruckner's view on the Penrose tiling. Structural Chemistry, Juni 2016

Grünbaum, B., Shephard, G. C.: Tilings and patterns. Freeman, 1987
Kapitel 10 »Aperiodic Tilings« gibt die erste vollständige Theorie der Penrose-Pflasterungen.