Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Gravitationswellen: Am Puls der Raumzeit

Drei Jahre nach dem ersten Nachweis der Raumzeitschwingungen haben sich Wissenschaftler ehrgeizige Ziele gesetzt: Sie wollen das Innere von Neutronen­sternen entschlüsseln und die Expansion des Weltalls vermessen – und besser als bisher das Wesen Schwarzer Löcher verstehen.
Simulation von Gravitationswellen

Mitte der 1980er Jahre fand der US-amerikanische Physiker Bernard Schutz eine neue Lösung für eines der ältesten Probleme der Astronomie: Wie misst man die Entfernung eines Himmelsobjekts von der Erde? Seit Generationen verwenden Forscher die Helligkeit von Sternen als kosmisches Metermaß. Doch das bringt zahlreiche Komplikationen mit sich. So können nahe und schwach leuchtende Sterne vortäuschen, sie seien weit entfernt und deutlich heller.

Gravitationswellen wären eine bessere kosmische Messlatte, erkannte Schutz, der an der Car­diff University in Großbritannien forscht. Diese Schwingungen der Raumzeit waren damals nicht mehr als eine Vorhersage von Albert Einsteins allgemeiner Relativitätstheorie. Sie entstehen, wenn massereiche Objekte, beispielsweise Schwarze Löcher, schnell beschleunigt werden. Schutz erkannte: Sollte ein Detektor die Wellen eines Tages auffangen, dann ließe sich leicht ausrechnen, wie stark das Signal bei der Aussendung war und welche Strecke es bis zur Erde zurückgelegt hat. Mit Gravitationswellen müsste sich also sehr genau die Expansion des Kosmos vermessen lassen ...

Kennen Sie schon …

Spektrum - Die Woche – Akustische Kur gegen Stress

Naturgeräusche haben eine unglaublich beruhigende Wirkung auf uns. Wieso das so ist und wie Vogelgezwitscher und Wasserrauschen im Gehirn verarbeitet werden und auf unsere Psyche wirken, lesen Sie in der aktuellen Ausgabe der »Woche«. Außerdem: Läutet das KI-Zeitalter eine neue Ära der Physik ein?

Spektrum der Wissenschaft – Eine neue Weltformel

Rund 100 Jahre währt die Suche der theoretischen Physik nach einer Quantentheorie der Schwerkraft. Doch vielleicht kann die Gravitation in einer Weltformel so bleiben, wie sie ist – zumindest fast. Experimente könnten die neue Theorie schon bald testen. Außerdem im Heft: Die Bedeutung der Böden der Erde wurden lange unterschätzt. Zahlreiche Organismen im Boden zersetzen abgestorbenes organisches Material und fördern so den globalen Kohlenstoffkreislauf. Gammastrahlenblitze mischen gelegentlich die irdische Ionosphäre durch. Aber brachten kosmische Explosionen das Leben auf der Erde schon einmal an den Rand der Existenz? Selbst unter dem Eis des arktischen Ozeans findet man Lava speiende Vulkane und Schwarze Raucher. Dies bietet einen neuen Blick auf die geologischen Vorgänge in unserem Planeten.

Spektrum Kompakt – Schwarze Löcher

Schwarze Löcher gehören längst nicht mehr in die Nische aberwitziger Theorien, sondern haben sich im Alltag der Astrophysik etabliert. Viele Phänomene im Weltall lassen sich nur mit diesen extrem kompakten Raumzeitfallen erklären.

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Farr, W. et al.: Distinguishing Spin-Aligned and Isotropic Black Hole Populations with Gravitational Waves. In: Nature 548, S. 426–429, 2017

Schutz, B. F.: Determining the Hubble Constant from Gravitational Wave Observations. In: Nature 323,S. 310–311, 1986

Smartt, S. J. et al.: A Kilonova as the Electromagnetic Counterpart to a Gravitational-Wave Source. In: Nature 551, S. 75–79, 2017

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.