Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Physik: Quantenfraktale

Teilchen in einer Raumdimension verhalten sich vollkommen anders als solche in einer Ebene. Doch was geschieht, wenn die Dimensionenzahl dazwischenliegt? Physiker haben erstmals die Wellenfunktionen von Elektronen untersucht, die in fraktalen Geometrien eingesperrt sind.
Hausdorff-Dimension der britischen WestküsteLaden...

Die Anzahl der Raumdimensionen ist entscheidend für viele Vorgänge in der Natur. Eine Maus in einem engen Abflussrohr könnte beispielsweise einer ihr entgegenkommenden Katze kaum entgehen, während sie es auf einem freien Feld deutlich einfacher hätte. Vögel, die zudem die dritte Raumdimension nutzen, fällt es am leichtesten, einem hungrigen Jäger zu entkommen.

So ist es auch in der Physik. Das Verhalten von Elektronen hängt stark davon ab, ob sie sich in ein-, zwei- oder dreidimensionalen Materialien befinden. In zwei und drei Dimensionen können sich die negativ geladenen Teilchen einfach aus dem Weg gehen, ihre Bewegung erinnert an die einer Flüssigkeit. Doch in nur einer Dimen­sion haben es Elektronen schwerer. Weil sie sich nicht weitläufig ausweichen können, beeinflussen die abstoßenden elektromagnetischen Kräfte sie deutlich stärker als in höheren Dimensionen. Das hat außergewöhnliche Folgen: Werden die Teilchen beispielsweise in Schwingung versetzt, oszilliert ihr Spin plötzlich losgelöst von ihnen selbst. Es wirkt, als gäbe es »Spinwellen« und »Ladungswellen«, die sich unabhängig voneinander ausbreiten.

Inwiefern physikalische Phänomene von der Dimension eines Systems abhängen, haben Forscher schon ausgiebig untersucht. Dabei haben sie sich auf ganzzahlige Dimensionen beschränkt. Nun haben Physiker um Sander Kempkes von der Universität Utrecht erstmals die Wellenfunktionen von Elektronen in Kristallen erforscht, deren Dimension zwischen eins und zwei liegt …

Juni 2019

Dieser Artikel ist enthalten in Spektrum der Wissenschaft Juni 2019

Kennen Sie schon …

Spezial Physik - Mathematik - Technik 2/2019

Spektrum der Wissenschaft – Spezial Physik - Mathematik - Technik 2/2019: Quantengravitation

Auf der Suche nach der Theorie von Allem - Wellenfunktion: Trickreiche Experimente an der Grenze der Realität • Trügerische Eleganz: Wie schön ist der Code des Universums? • Raumzeit-Singularitäten: Ein neuer Blick auf die kleinsten Skalen

11/2019

Spektrum - Die Woche – 11/2019

In dieser Ausgabe widmen wir uns der Pille, dem Erdöl und Schwarzen Löchern.

08/2019

Spektrum - Die Woche – 08/2019

In dieser Ausgabe widmen wir uns dem Tempolimit, Stickoxiden und der Mathematik.

Lesermeinung

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Leserzuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Leserzuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmer sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Lesermeinungen können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Bercioux, D., Iniguez, A.: Quantum fractals. Nature Physics, 2019

Hansson, T. H.: Fermi and Luttinger liquids. Lecture Notes, 2011

Kempkes, S. et al.: Design and characterization of electrons in a fractal geometry. Nature Physics, 2018

Mandelbrot, B. B.: Die fraktale Geometrie der Natur. Birkhäuser, 1987

Neupert, T. et al.: Topology in the Sierpiński-Hofstadter problem. Physical Review B 98, 2018