Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Stellarphysik: Eine neue Sicht auf Supernovae, Teil 2

Der Erfolg der Natur­wissenschaften liegt in der Verbindung von Beobachtungen mit Theorien. Die Supernova-Forschung ist ein Paradebeispiel dafür, wie die Computer­simulationen diese Verknüpfung erweitern und bereichern. Mit aufwändigen Berechnungen und Visua­lisierungen eröffnen sich ­Einblicke in das Innere ­sterbender Sterne – die alleine oder als Paar in einer katastrophalen Explo­sion enden.
Simulation einer Supernova

In der Fortsetzung unserer Reihe widmen wir uns vor allem den Modellen, mit denen Astrophysiker den Geheimnissen der Sternexplosionen auf die Schliche kommen wollen. Dabei knöpfen wir uns die Supernova-Typen, wie sie in Teil 1 präsentiert wurden, nach und nach vor (siehe SuW 3/2020, S. 30).

Im Fall der »klassischen« Typ-Ia-Supernovae ist die Fachwelt davon überzeugt, dass es sich um thermonukleare Explosionen Weißer Zwerge handelt, die hauptsächlich aus Kohlenstoff und Sauerstoff bestehen. Die Kernfusion von Kohlenstoff und Sauerstoff zu Elementen der Eisengruppe produziert genau die richtige Menge an Energie, die in Supernovae Ia beobachtet werden, wenn etwa eine Sonnenmasse von Kohlenstoff und Sauerstoff »verbrannt« wird. Da primär radioaktives Nickel-56 erzeugt wird, liefert das eine natürliche Erklärung für die Form der Lichtkurven: Zunächst zeigt sie einen schnellen Anstieg, bis die Strahlung aus dem radioaktiven Zerfall die Oberfläche des Zwergs erreicht; danach folgt ein Abfall, welcher der Zerfallskurve von Nickel-56 folgt (Halbwertszeit 6,1 Tage), und schließlich in einen langsameren Abfall auf Grund des Zerfalls von Kobalt-56 in Eisen-56 (Halbwertszeit 77 Tage) mündet. Die unterschiedlichen Halbwertszeiten machen sich direkt als Knick in der Lichtkurve bemerkbar. In dieser Vorstellung ist die Helligkeit der Supernova am Maximum direkt proportional zur Menge des entstandenen Nickel-56. Nach dem US-amerikanischen As­trophysiker David Arnett wird diese Gesetzmäßigkeit die »Arnettsche Regel« genannt. Doch hier hört dann der allgemeine Konsens bereits auf. Denn weder ist klar, welche Sterne genau bei einer Supernova vom Typ Ia explodieren, noch wissen wir zweifelsfrei, wie die Explosion im Einzelnen abläuft …

Kennen Sie schon …

Spektrum der Wissenschaft – Den Kosmos entschlüsseln – Vom Sonnensystem in die Tiefen des Universums

In dieser Ausgabe berichten wir über ferne Galaxien, das Sterben von Sternen, äußerst energiereiche Gammastrahlenblitze und neue Erkenntnisse zur Dunklen Energie. Weiter informieren wir Sie über Raumfahrtmissionen zu anderen Himmelskörpern, beispielsweise die der NASA-Sonde Europa-Clipper, welche den gleichnamigen Jupitermond auf die Existenz von Ozeanen untersuchen soll. Darüber hinaus: Teleskope der Superlative mit denen der Kosmos auch von der Erde aus, immer genauer beobachtet werden kann.

Spektrum - Die Woche – Wie ein Elementarteilchen unser Weltbild auf die Probe stellte

Das magnetische Moment des Myons stellte das Standardmodell in Frage. Doch Fortschritte bei theoretischen Berechnungen konnten die Unstimmigkeiten zu den hochpräzisen Experimenten nun ausräumen. Darüber hinaus: Wie wirkt sich unsere Darmflora auf die Wirksamkeit von Krebsbehandlungen aus?

Spektrum Kompakt – Bit, Qubit – oder beides?

Qubits werden Bits und Bytes bald überholen – oder doch nicht? Quantencomputer sollen Aufgaben schneller lösen als klassische Rechner, aber die alte Technologie zeigt immer wieder, was sie kann. Es bleibt spannend, wer das Rennen gewinnt oder ob vielleicht ein Hybridsystem die Lösung sein wird.

  • Literaturhinweise

Janka, H.-T.: Supernovae und kosmische Gammablitze: Ursachen und Folgen von Sternexplosionen (Astrophysik aktuell). Spektrum Akademischer Verlag, Heidelberg, 2011

Janka, H.-T., Klose, S., Röpke, F.: Supernovae und kosmische Gammablitze. Teil 2: Die allerhellsten Phänomene. Sterne und Weltraum 4/2011, S. 44–52

Jerkstrand, A. et al.: A type Ia supernova at the heart of superluminous transient SN 2006gy. Science 367, 2020

Margalit, B. et al.: The GRB–SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures. Monthly Notices of the Royal Astronomical Society 475, 2018

Modyaz, M. et al.: New regimes in the observation of core-collapse supernovae. Nature Astronomy 3, 2019

Phillips, M. M.: The absolute magnitudes of Type IA supernovae. The Astrophysical Journal 413, 1993

Woosley, S. et al.: Models for type I supernova. I. Detonations in white dwarfs. The Astrophysical Journal 301, 1986

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.