Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Physik: Topologische Quantencomputer

Eine neue Art von Qubit könnte den Weg zu einem universellen Quantencomputer ebnen. Doch noch ist nicht klar, ob eine solche Informationseinheit überhaupt existiert.
Quantencomputer (Illustration)

In vielen Bereichen versprechen Quantencomputer, die Geräte der Zukunft zu sein: Sie könnten einige Probleme wesentlich schneller lösen als ihre klassischen Varianten – etwa, wenn es um Routenplanung, künstliche Intelligenz oder die Entwicklung von Medikamenten geht. Doch der Fortschritt auf dem Gebiet verläuft schleppend, bisher basieren die verfügbaren Geräte auf wenigen Quanten-Bits (kurz Qubits), wodurch komplizierte Berechnungen, die man zum Lösen interessanter Probleme braucht, noch in weiter Ferne liegen. Eine der Hauptschwierigkeiten ist, dass die Qubits extrem empfindlich sind, weshalb man sie so gut wie möglich von ihrer Umgebung abschotten muss. Und je größer das Quantensystem, desto schwerer fällt diese Aufgabe.

Aber es gibt Hoffnung: Exotische Qubits in so genannten topologischen Quantencomputern sind theoretischen Berechnungen zufolge wesentlich robuster – und erweisen sich somit als vielversprechender Ansatz, um auf quantenmechanischen Prinzipien basierende Rechner zu konstruieren. Bereits 2018 veröffentlichte ein Forscherteam um den Physiker Leo Kouwenhoven von der Technischen Universität Delft in den Niederlanden im Fachmagazin »Nature« den dazu passenden Meilenstein: Sie behaupteten, die lang ersehnten topologischen Qubits, so genannte Majorana-Nullmoden, erstmals nachgewiesen zu haben.

Obwohl die Theorie hinter den exotischen Teilchen gut verstanden ist, hat es sich als extrem schwierig herausgestellt, sie experimentell zu erzeugen. Trotz der technischen Herausforderungen sind einige Forscherinnen und Forscher dennoch überzeugt, dass Majorana-Nullmoden die einzige Möglichkeit darstellen, universelle Quantencomputer mit hunderten bis tausenden Qubits herzustellen. Auch das erfolgreiche US-Unternehmen Microsoft setzt größtenteils auf diesen ehrgeizigen Ansatz.

Deshalb erregte der Fachartikel von Kouwenhoven und seinem Team sehr viel Aufmerksamkeit. Die Presse feierte das Ergebnis als den Beginn der Ära topologischer Quantencomputer. Ein Jahr später eröffnete Microsoft ein eigenes Forschungszentrum für Quantentechnologie auf dem Campus der TU Delft, mit Kouwenhoven als Leiter.

Doch dann ging es bergab …

Kennen Sie schon …

Spektrum der Wissenschaft – Quantencomputer

Supraleitende Schaltkreise, neutrale Atome oder Ionenfallen – es gibt viele verschiedene Ansätze, Qubits zu realisieren. Welche Technologie am Ende im Quantencomputer stecken wird, ist noch offen. Wir geben einen Überblick über die sechs aktuellen Favoriten. Außerdem im Heft: In Island planen Wissenschaftler, im Bereich der Krafla zu einem Reservoir mit flüssigem Gestein vorzudringen. So wollen sie erstmals Magma direkt erforschen – und geothermische Energie erschließen. Wir stellen außerdem die ersten überraschenden Ergebnisse von Gesteinsproben des Asteroiden Bennu vor, die aus zu den Anfängen des Sonnensystems stammen. Die ältesten Höhlenmalereien finden sich auf Indonesien. Fachleute suchen nach den Ursachen, warum diese seit Ihrer Entdeckung plötzlich verfallen.

Spektrum - Die Woche – Putzig, aber unerwünscht

Waschbären haben sich in Europa rasant verbreitet – die einen finden sie niedlich, andere sind nur noch genervt, weil die Tiere den Müll plündern oder in den Dachboden einziehen. Dazu kommen Risiken für Gesundheit und Natur. Wie stark schaden sie der heimischen Tierwelt und uns Menschen?

Spektrum Kompakt – Rätsel der Teilchenphysik

Das Standardmodell sollte das Universum erklären, doch manche Fragen bleiben offen. Um Antworten zu erhalten, werden aufwändige Untersuchungen durchgeführt: zu der Masse von Neutrinos, dem Rätsel der Dunklen Materie und warum sich Materie über Antimaterie durchsetzte.

  • Quellen

Frolov, S.: Quantum computing’s reproducibility crisis: Majorana fermions. Nature 592, 2021

Lee, E. J. H. et al.: Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures. Nature Nanotechnology 9, 2014

Vaitiekenas, S. et al.: Flux-induced topological superconductivity in full-shell nanowires. Science 367, 2020

Valentini, M. et al.: Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science 373, 2021

Zhang, H. et al.: RETRACTED ARTICLE: Quantized Majorana conductance. Nature 556, 2018

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.