Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Kosmologie: Die schwarzen Löcher des Urknalls

Schon gleich nach seinem Beginn könnte eine dichte Schar Schwarzer Löcher das junge Universum durchsetzt haben. Viele der Objekte haben vielleicht bis heute überlebt. Sie wären plausible Kandidaten für die unsichtbare und rätselhafte Dunkle Materie.
Einander umkreisende Schwarze Löcher können Physiker inzwischen anhand von Gravitationswellen vermessen. Möglicherweise verraten die Signale sogar, ob die Objekte aus der Urzeit des Alls stammen.

In den Tiefen des Alls umkreisten sich vor mehr als einer Milliarde Jahren zwei Schwarze Löcher auf immer engeren Spiralbahnen und stürzten schließlich ineinander. Der heftige Vorgang erschütterte das Gefüge der Raumzeit und erzeugte Gravitationswellen, die sich mit Lichtgeschwindigkeit in alle Richtungen ausbreiteten. Im September 2015 erreichten die Schwingungen schließlich unseren Planeten und machten sich in den Sensoren des Gravitationswellenobservatoriums LIGO (Advanced Laser Interferometer Gravitational Observatory) in den USA durch ein charakteristisches Signal bemerkbar.

Dieser erste direkte Nachweis von Gravitationswellen bestätigte Albert Einsteins 100 Jahre alte Vorhersage solcher Raumzeitschwingungen – die Einstein allerdings für niemals nachweisbar gehalten hatte. Dem Signal zufolge muss jedes der beiden Schwarzen Löcher 30-mal schwerer als die Sonne gewesen sein. Damit waren die Massen zwei- bis dreimal größer als die von üblichen Schwarzen Löchern, die aus Supernova-Explosionen massereicher Sterne hervorgehen. Konnten derartige Objekte überhaupt aus Sternen entstehen? Und selbst wenn zwei besonders massereiche Sterne unabhängig voneinander als solche Monstren endeten, wäre es – zumindest im Verlauf der vermuteten Entwicklung des Universums – unwahrscheinlich, dass sie anschließend zueinanderfanden und verschmolzen. Darum liegt die Annahme nahe, diese massereichen Schwarzen Löcher könnten auf irgendeine andere Weise entstanden sein, ganz ohne Vorläufersterne. Vielleicht hat LIGO also nicht nur Gravitationswellen entdeckt, sondern etwas noch Erstaunlicheres: Schwarze Löcher, die es bereits gab, bevor sich die ersten Sterne bildeten ...

Kennen Sie schon …

Sterne und Weltraum – Gravitationswellen – Wie ist der Status bei gemessenen Signalen?

Gravitationswellendetektoren messen seit April 2024 wieder Signale von Schwarzen Löchern – in unserer Titelgeschichte erfahren Sie mehr über die neuen Erkenntnisse zu diesen rätselhaften Objekten. Darüber hinaus zeigen wir Ihnen die Technik der JANUS-Kamera auf der europäischen Raumsonde JUICE, die im Juli 2031 Jupiter und seine Monde detailliert erkunden soll. Wir berichten über die erfolgreiche Probennahme von der Mondrückseite mit der chinesischen Sonde Chang’e 6 und zeigen neue Aufnahmen des Weltraumteleskopes Euclid.

Spektrum der Wissenschaft – Eine neue Weltformel

Rund 100 Jahre währt die Suche der theoretischen Physik nach einer Quantentheorie der Schwerkraft. Doch vielleicht kann die Gravitation in einer Weltformel so bleiben, wie sie ist – zumindest fast. Experimente könnten die neue Theorie schon bald testen. Außerdem im Heft: Die Bedeutung der Böden der Erde wurden lange unterschätzt. Zahlreiche Organismen im Boden zersetzen abgestorbenes organisches Material und fördern so den globalen Kohlenstoffkreislauf. Gammastrahlenblitze mischen gelegentlich die irdische Ionosphäre durch. Aber brachten kosmische Explosionen das Leben auf der Erde schon einmal an den Rand der Existenz? Selbst unter dem Eis des arktischen Ozeans findet man Lava speiende Vulkane und Schwarze Raucher. Dies bietet einen neuen Blick auf die geologischen Vorgänge in unserem Planeten.

Spektrum der Wissenschaft – Vom Quant zur Materie

In den letzten Jahrzehnten haben sich Quantenfeldtheorien durchgesetzt, um grundlegende physikalische Phänomene unseres Universums zu erklären. Aber nicht alle physikalischen Effekte lassen sich damit erklären. Manche Erscheinungen lassen sich nicht stimmig in das Standardmodell der Teilchenphysik integrieren. Das reicht von subtilen Effekten wie der Tatsache, dass Neutrinos sich ineinander umwandeln bis hin zur auf großen Skalen wirkenden Schwerkraft. »Vom Quant zur Materie« stellt die subatomaren Spielregeln der Teilchenphysik vor und erklärt deren Bausteine. Wir berichten beispielsweise, wie sich Atome mit Lichtpulsen manipulieren lassen, ob es eine vierte Variante von Neutrinos gibt, und stellen kompakte Plasmabeschleuniger vor.

  • Quellen

Quellen

Bird, S. et al.: Did LIGO Detect Dark Matter?. In: Physical Review Letters 116, 201301, 2016

Clesse, S., García-Bellido, J.: Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the Seeds of Galaxies. In: Physical Review D 92, 023542, 2015

Clesse, S., García-Bellido, J.: The Clustering of Massive Prim­ordial Black Holes and Dark Matter: Measuring their Mass Distribution with Advanced LIGO. In: Physics of the Dark Universe 15, S. 142-147, 2017

García-Bellido, J. et al: Density Perturbations and Black Hole Formation in Hybrid Inflation. In: Physical Review D 54, S. 6040-6058, 1996

Kashlinsky, A.: LIGO Gravitational Wave Detection, Primordial Black Holes, and the Near-IR Cosmic Infrared Background Anisotropies. In: Astrophysical Journal Letters 823, L25, 2016

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.