Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Zeitkristalle: Quantenmaterie in endloser Schwingung

Zwei Forschergruppen haben im Labor exotische Strukturen erzeugt, die erst wenige Jahre zuvor vorhergesagt worden waren: Muster in Quanten­systemen, die sich mit der Zeit wiederholen.
Die Stickstofffehlstellenzentren in einem Diamanten leuchten rot auf, wenn sie mit grünem Laserlicht bestrahlt werden.

Innerhalb von fünf Jahren haben Wissenschaftler ein radikal neues theoretisches Konzept für eine bizarre Form von Materie entwickelt, diskutiert, verworfen, überarbeitet und schließlich im Labor umgesetzt. Der Physiknobelpreisträger Frank Wilczek vom Massachusetts Institute of Technology erarbeitete 2012 das Prinzip dieser so genannten Zeitkristalle. Nun haben zwei Forschergruppen sie beobachtet. Herkömmliche Kristalle zeichnen sich durch eine regelmäßige räumliche Anordnung aus – bewegt man sich hindurch, trifft man in immer gleichen Abständen auf ein Atom oder Molekül. Auch bei Zeitkristallen gibt es eine wiederkehrende Struktur, allerdings in der Zeit.

Physiker sprechen bei einem solchen Übergang von einem Symmetriebruch. So ordnen sich etwa die umherschwirrenden Moleküle in flüssigem Wasser beim Erstarren zu Eis auf einem Gitter an. Taucht man – auf mikroskopischer Ebene – in Wasser hinein, erscheint es von jedem Punkt und in jede Richtung über große Distanzen gleichermaßen durcheinander. Im Eis hingegen erblickt man Moleküle, die aufgereiht sind wie auf einer Perlenkette. Die Sichtverhältnisse ändern sich so plötzlich wie für einen Wanderer, der aus einem naturgewachsenen Wald auf das Gelände einer Baumschule tritt: Die Umgebung wiederholt sich nach dem Symmetriebruch nur noch an endlich vielen Stellen. Physiker sprechen hier von einer diskreten Symmetrie, im Gegensatz zu einer kontinuierlichen, bei der etwas unter beliebigen Winkeln gleich erscheint.

Wilczek überlegte 2012, ob der energiesparendste Zustand nicht etwa ein Symmetriebruch mit periodischer Ordnung im Raum sein könnte, sondern einer mit einem regelmäßigen Muster in der Zeit. Eine solche Struktur wäre selbst in ihrem niedrigsten Energiezustand nie in Ruhe und würde immer wieder und in klar definierten Intervallen in eine bestimmte Ordnung zurückkehren ...

Kennen Sie schon …

Sterne und Weltraum – Raumzeit: Experimente zur Quantennatur

Die Relativitätstheorie Albert Einsteins ist das Meisterwerk zur Beschreibung der Schwerkraft. Seit Jahrzehnten steht aber die Frage im Raum, ob die Gravitation auf submikroskopischen Längenskalen modifiziert werden muss. Gibt es quantenhafte Austauschteilchen, die Gravitonen? In unserem Titelbeitrag stellen wir Überlegungen vor, wie man experimentell eine Quantennatur der Raumzeit testen könnte. Im zweiten Teil unseres Artikels zur Urknalltheorie beleuchten wir alternative Ansätze zur Dunklen Energie: das Local-Void- und das Timescape-Modell. Außerdem: Teil zwei unserer Praxistipps für die Astrofotografie mit dem Smartphone – Mond und Planeten im Fokus, die Ordnung im Chaos des Dreikörperproblems und woher stammen erdnahe Asteroiden?

Spektrum der Wissenschaft – Eine Theorie von allem: Lassen sich Quantenphysik und Schwerkraft vereinen?

Lassen sich Quantenphysik und Schwerkraft vereinen? In der aktuellen Ausgabe der PMT haben wir Beiträge für Sie zusammengestellt, in denen Forscherinnen und Forscher über die Ergebnisse ihrer Suche nach einer fundamentalen Theorie unserer Welt berichten. Entstanden ist eine erkenntnisreiche Sammlung an Beiträgen über die Quantennatur der Raumzeit, denkbaren Experimenten zum Nachweis von Gravitonen, Schwarzen Löchern, der Theorie der Quantengravitation, teleparalleler Gravitation und vielem mehr. Lesen Sie, welche Fortschritte es in den letzten Jahren gab, die Gesetze der Quantenwelt mit den geometrischen Konzepten von Raum und Zeit zu vereinigen, und welche Hürden dabei noch zu überwinden sind.

Spektrum - Die Woche – Die radikale Lösung für die Plastikkrise

Plastik war einst eine Revolution – heute ist es ein Umweltproblem. Forschende in Deutschland wollen das ändern: mit neuen Kunststoffen, die vollständig recycelbar sind. Außerdem: Warum der Urknall vielleicht ganz anders war, was Männer bei einer Vasektomie erwartet und mehr.

  • Quellen

Choi, S. et al.: Observation of Discrete Time-Crystalline Order in a Disordered Dipolar Many-Body System. In: Nature 543, S. 221–225, 2017

Yao, N. Y. et al.: Discrete Time Crystals: Rigidity, Criticality, and Realizations. In: Physical Review Letters 118, 030401, 2017

Zhang, J. et al.: Observation of a Discrete Time Crystal. In: Nature 543, S. 217–220, 2017

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.