Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Informatik: Wie komplex darf es sein?

Kann ein Computer die Lösung eines Problems immer in vertretbarer Zeit überprüfen, egal wie schwierig es ist? Ja, sagt ein neuer Beweis - und widerlegt damit eine ganze Reihe etablierter Vermutungen aus der Mathematik und Physik.
Künstlerische Darstellung der Computertechnologie

Wissenschaftler lieben es, Dinge zu kategorisieren – zumindest auf abstrakter Ebene. Chemiker teilen beispielsweise alle Elemente in das Periodensystem ein, Biologen ordnen Lebewesen nach Familien und Arten, und Mathematiker haben im vergangenen Jahrzehnt, nach langer Suche, alle endlichen einfachen Gruppen gefunden und aufgelistet.

Informatiker suchen ebenfalls nach Ordnung, wenn auch ein wenig anders: Sie sortieren Probleme nach ihrer Komplexität. Bereits in der Vergangenheit haben sie herausgefunden, dass gewisse Aufgaben für Computer sehr einfach zu lösen sind. Bei ihnen wächst mit der Länge des Problems die zur Lösung nötige Rechenzeit bloß langsam (polynomial) an. Aus Sicht von Informatikern gehören sie damit zur so genannten Komplexitätsklasse P.

Probleme, die schwer zu lösen sind, sich aber einfach überprüfen lassen, zählen hingegen zur Klasse NP. Ein Beispiel ist ein anspruchsvolles Sudoku-Rätsel: Bei diesem ist es schwierig, die passenden Zahlen zu finden. Hat man sie jedoch einmal ausgetüftelt oder bekommt ein ausgefülltes Blatt präsentiert, lässt sich leicht überprüfen, ob es korrekt ist. Ob P und NP wirklich verschiedene Klassen sind oder ob man einfach noch keinen Algorithmus kennt, der die entsprechenden Probleme effizient löst, zählt zu den wichtigsten offenen Fragen der theoretischen Informatik. Sie ist eines der sieben Millennium-Probleme, deren Lösung das Clay Mathematics Institute mit je einer Million US-Dollar belohnt.

Mit P und NP fängt der Spaß aber erst an. Computerwissenschaftler haben mittlerweile eine Hierarchie von Komplexitätsklassen herausgearbeitet, von sehr einfachen hin zu extrem anspruchsvollen Aufgaben …

Kennen Sie schon …

Spektrum Kompakt – Quantencomputer - Neue Erkenntnisse und Verfahren

Diskutiert und selten gesehen: der Quantencomputer verspricht Fortschritt von Technik bis Medizin - doch stecken seine Berechnungen noch in den Kinderschuhen. Wie funktionieren die futuristischen Rechner und weshalb genügt der heimische PC ihren Zwecken teilweise nicht?

Spektrum - Die Woche – Die Macht der Gute-Nacht-Geschichte

Vorlesen fördert nicht nur das Buchstabenverständnis, es ist sogar ein wichtiger Grundstein für die soziale Entwicklung. Was die Gute-Nacht-Geschichte alles bewirken kann, lesen Sie in der aktuellen »Woche«. Außerdem: Die Écalle-Theorie bringt endliche Antworten auf unendlich scheinende Fragen.

Spektrum Kompakt – Pi ist überall - Die fabelhafte Welt der Mathematik

Häufiger als man denkt, schleicht sie sich in unseren Alltag ein: Die Kreiszahl Pi spielt nicht nur eine Rolle bei runden Flächeninhalten, sondern auch bei Lebenssimulationen, Streichhölzern oder Billardspielen - und obwohl sie seit jeher fasziniert, wirft ihr Vorkommen noch immer Fragen auf.

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Ito, T., Vidick, T.: A multi-prover interactive proof for NEXP sound against entangled provers. ArXiv 1207.0550, 2012

Ji, Z. et al.: MIP* = RE. ArXiv 2001.04383, 2020

Natarajan, A., Wright, J.: NEEXP in MIP*. ArXiv 1904.05870, 2019

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.