Direkt zum Inhalt

Teilchenphysik: Woraus besteht die Dunkle Materie?

Weil bisherige Experimente keine klare Antwort auf diese Frage liefern, sollten Physiker ihre Suche nach jenen flüchtigen Elementarteilchen ausweiten, die den Löwenanteil der Masse des Universums stellen. Bleiben die Erfolge auch dann noch aus, werden sie ihre Theorien über unsere Welt grundsätzlich überdenken müssen.
Teleskopenlandschaft

Die Dunkle Materie macht ihrem Namen alle Ehre. Zwar liefern astronomische Beobachtungen schon seit Jahrzehnten überzeugende indirekte Hinweise auf die Existenz dieser Form von Materie, die elektromagnetische Strahlung weder aussendet noch absorbiert. Aber alle Versuche, ihre Bestandteile nachzuweisen, schlugen fehl.

Auf die Gegenwart Dunkler Materie lässt sich nur durch ihre Schwerkraft schließen. Beispielsweise bewegen sich Sterne und Gaswolken in Galaxien oder auch Galaxien in Galaxienhaufen deutlich schneller, als allein die Anziehung der sichtbaren Materie erklären würde. Das Licht weit entfernter Objekte könnte durch die Schwerkraft von Dunkler Materie abgelenkt werden, die ihm auf dem Weg zur Erde in die Quere kommt. Und schließlich hängt auch das beobachtete Muster der großräumigen Strukturen im Universum hauptsächlich von der Dunklen Materie ab. Tatsächlich sind astronomischen Messungen zufolge ungefähr 85 Prozent der Materie im Universum dunkel – das entspricht etwa einem Viertel seines gesamten Energieinhalts.

So allgegenwärtig die Dunkle Materie ist, sie entzieht sich immer noch der Beobachtung. Bislang waren die Befunde allesamt negativ, wenn Forscher den Teilchenkandidaten, mit denen sie zu erklären wäre, mit Experimenten zu Leibe rückten. LUX, das Large Underground Xenon Experiment tief unter der Erde in der Homestake-Mine im US-Bundesstaat South Dakota, ist der bislang empfindlichste Detektor seiner Art. In den inzwischen ausgewerteten ersten drei Monaten seines Messbetriebs 2013 fand er aber keinerlei Anzeichen für Teilchen der Dunklen Materie. Der große Hadronenbeschleuniger LHC (Large Hadron Collider) des europäischen Teilchenforschungszentrums CERN bei Genf lieferte bislang ebenfalls keine Hinweise. Dort fahndet man nach denjenigen Kandidaten, die manchen Forschern zufolge am ehesten für die Dunkle Materie in Frage kommen: die von Theoretikern vorhergesagten supersymmetrischen Teilchen. Jedes bekannte Elementarteilchen existiert demzufolge auch in Gestalt eines viel schwereren so genannten Superpartners.

Gibt es Licht am Ende dieses dunklen Tunnels? Möglicherweise – aber nur dann, wenn wir die Suche entschlossener angehen und ausweiten. ...

Kennen Sie schon …

Spektrum - Die Woche – 75 Jahre Grundgesetz: »Ein Durchbruch in nur 13 Tagen«

75 Jahre Grundgesetz: Die Historikerin Uta Piereth im Interview über den Verfassungskonvent von Herrenchiemsee, auf dem die Basis für unser Grundgesetz gelegt wurde.

Spektrum - Die Woche – Tierisch gut geträumt

Träume sind nicht uns Menschen vorbehalten, auch Tiere sind während des Schlafs zeitweise in anderen Welten unterwegs. Was passiert dabei im Gehirn, welche Funktion erfüllt das Träumen? Außerdem in dieser »Woche«: Gigantische Leerräume im All liefern wichtige Daten für die astronomischen Forschung.

Spektrum der Wissenschaft – Antimaterie

Hochempfindliche Versuche spüren einer winzigen Asymmetrie im Elektron nach. Sie könnte erklären, warum kurz nach dem Urknall die Materie statt die Antimaterie Oberhand gewonnen hat. Doch dieses hypothetische Dipolmoment müsste man erst einmal messen. Außerdem: In der Krebsmedizin spielen zielgerichtete Behandlungsverfahren eine immer wichtigere Rolle. Zu ihnen gehören Antikörper-Wirkstoff-Konjugate, die Tumorzellen präzise aufspüren und angreifen. Die Ergebnisse der Verhaltensforschung an Insekten zeigen, dass Bienen und andere Sechsbeiner deutlich höhere kognitive Fähigkeiten besitzen als bislang gedacht. Das hat weit reichende ethische Konsequenzen. In Alaska färben sich unberührte Flüsse und Bäche rötlich; ganze Ökosysteme sind in Gefahr. Welche Prozesse löst tauender Permafrost aus?

Schreiben Sie uns!

1 Beitrag anzeigen

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Akerib, D. S. et al. (LUX Collaboration): First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility. In: Physical Review Letters 112, 091303, 4. März 2014

Aalseth, C. E. et al. (CoGeNT Collaboration): Search for An Annual Modulation in Three Years of CoGeNT Dark Matter Detector Data. In: Cosmology and Nongalactic Astrophysics, 14. Januar 2014

Aguilar, M. et al. (AMS Collaboration): First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5 – 350 GeV. In: Physical Review Letters 110, 141102, 3. April 2013

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.