Roter Planet: Curiosity liefert erste detaillierte Gesteinsanalyse

Bei einer Pressekonferenz der NASA am Abend des 12. März wurden Ergebnisse des CheMin-Experiments im Diffraktometer-Modus präsentiert. Dabei bestrahlt CheMin die feinpulvrige Gesteinsprobe mit Röntgenstrahlung aus einer speziellen Röntgenröhre mit genau bekannter Wellenlänge und Intensität. CheMin nimmt als Diffraktometer Beugungsdiagramme der im Gesteinspulver enthaltenen Minerale auf. Durch einen Abgleich mit der Röntgendatei aller bekannten Minerale lässt sich daraus der Mineralbestand der Probe klar und eindeutig ermitteln.
Im beigestellten Beugungsbild sind die Resultate von "John Klein" im rechten Teilbild zu sehen. Auffällig ist eine helle Zone in der Mitte am unteren Bildrand nahe des abgeschirmten Primärstrahls, der auf Tonminerale der Smektit-Gruppe zurückgeht. Dies sind Schicht- oder Phyllosilikate, die sich bei der Verwitterung silikathaltiger Minerale in einer wässrigen Umgebung bilden. Dafür muss flüssiges Wasser über längere Zeiträume hinweg, mindestens einige 100 Jahre lang, auf sie einwirken. Smektite sind auf der Erde sehr weit verbreitet und unter anderem ein Hauptbestandteil von Schlamm und tonigen Böden. Neben den nicht weiter spezifizierten Tonmineralen stieß CheMin auf Feldspat der Plagioklas-Gruppe und die Silikatminerale der Pyroxen- und Olivin-Gruppen und etwas Magnetit (Eisenoxid). Bei ihnen handelt es sich um typische Hauptbestandteile von magmatischen Gesteinen, wie sie von Vulkanen gefördert werden. Im linken Teilbild ist das Diffraktogramm einer Probe zu sehen, die Curiosity an anderer Stelle (Rocknest) aus einer kleinen Anhäufung von losem Staub und Sand entnahm. Hier fehlen die Tonminerale völlig, das Lockermaterial besteht nur aus wasserfreien Mineralen.
Wasser und Sauerstoff stammen aus den sich zersetzenden Tonmineralen, das Kohlendioxid könnte aus Karbonaten im Marsgestein oder aus der Marsatmosphäre stammen. Die Wasserkurve weist drei Maxima auf: Hier zerfallen bei steigender Temperatur unterschiedlich zusammengesetzte wasserhaltige Minerale. Erst ab Temperaturen oberhalb von etwa 500 Grad Celsius werden unterschiedliche Fraktionen von Schwefel frei, siehe die grünen und olivfarbenen Kurven. Er stammt aus noch nicht näher bestimmten sulfidhaltigen Mineralen und dem bereits nachgewiesenen Kalziumsulfat.
Die Ergebnisse erlauben den Schluss, dass das Gestein von "John Klein", ein feinkörniges Schichtgestein aus magmatischen Mineralen und beigemengten Tonmineralen unter chemisch recht gutartigen Bedingungen nach irdischer Vorstellung entstand. Das Gestein bildete sich in einer feuchten Umgebung, die weder stark oxidierend, extrem sauer oder sehr salzhaltig war. Dies war bei den bislang von anderen Landesonden auf dem Mars untersuchten Gesteinen der Fall. Solch eine Umgebung wäre daher auch durchaus für primitive irdische Bakterien geeignet gewesen.
Aber der Nachweis von potenziell lebensfreundlichen Bedingungen ist noch kein Beleg für Leben. Was bei der Pressekonferenz der NASA nicht erwähnt wurde, war der Nachweis von komplex aufgebauten organischen Molekülen, also Verbindungen von Kohlenstoff mit Wasserstoff, Stickstoff und anderen Atomen. Sie sind aber eine Grundvoraussetzung für Leben, wie wir es kennen. Nach wie vor ist also die Frage, ob es jemals Leben auf dem Mars gegeben hat oder gibt, unbeantwortet.
Schreiben Sie uns!