Direkt zum Inhalt

Adaptive Optik: Dem Sternfunkeln ein Schnippchen schlagen

Vor zehn Jahren ging NACO in Betrieb: das erste adaptive Optik-System am Very Large Telescope der ESO. Eins adaptive Optik erlaubt es Astronomen, das Funkeln der Sterne - Störungen beim Durchgang des Sternenlichts durch die Erdatmosphäre - auszugleichen und so extrem detailscharfe Bilder von Himmelsobjekten zu erstellen. NACO blickt auf eine beachtliche Galerie wissenschaftlicher Ergebnisse aus zehn Jahren Beobachtungsbetrieb zurück: von der ersten Direktabbildung eines Exoplaneten bis zu Einblicken in die unmittelbare Nachbarschaft des Schwarzen Lochs im Zentrum unserer Heimatgalaxie.

Die adaptive Optik NACO am Very Large Telescope | Die adaptive Optik NAOS-CONICA (NACO) am 8,2-Meter-Teleskop Yepun des VLT. Der dunkelblauere Ring links im Bild ist der Teleskopadapter; rechts davon ist hellblau NAOS zu sehen. CONICA sitzt im Inneren des roten Kryostaten. Die zugehörige Kontrollelektronik befindet sich in dem weißen Schrank rechts.
Für Nichtastronomen ist das Funkeln der Sterne eine vornehmlich romantische Angelegenheit. Für Astronomen ist es sichtbares Zeichen eines grundlegenden Problems: Wenn Licht durch turbulente Regionen der Erdatmosphäre tritt, wird es unregelmäßig abgelenkt – und das in schneller Folge immer wieder anders. Was ein scharfes Abbild eines Sterns im Teleskop sein sollte, wird durch die Verzerrung und das Hin- und Hertanzen des Sternbildchens zu einem diffusen Flecken. Bevor mit adaptiver Optik ein Gegenmittel gefunden war, gab es für Astronomen, die besonders detailscharfe Bilder von Himmelsobjekten benötigten, nur zwei Möglichkeiten: Entweder die Nutzung von Weltraumteleskopen, oder aber das Warten auf außergewöhnlich vorteilhafte atmosphärische Bedingungen, wie sie in jedem Jahr höchstens ein paar Mal auftreten – wenn überhaupt.

Zumindest im nahen Infraroten, also für elektromagnetische Strahlung mit Wellenlängen, die ein wenig über denjenigen des sichtbaren Lichts liegen, können die Astronomen dieses Problem mittlerweile direkt angehen: Das sich ständig verändernde Bild wird mit Hilfe schneller Computer analysiert, die in Echtzeit einen verformbaren Spiegel steuern. Der Spiegel verformt sich so, dass das Herumtanzen und die Verzerrung des Bilds ausgeglichen werden.

NACO war das erste adaptive Optik-System am VLT, dem Flaggschiff der europäischen bodengebundenen Astronomie. Das Instrument ist seit 2001 an einem der vier 8,2-Meter-Teleskope des VLT installiert und nahm den wissenschaftlichen Beobachtungsbetrieb am 25. November 2001 auf (Astronomen sprechen von "first light", vom "ersten Licht" des Instruments).

NACO war nicht das erste AO-Instrument an einem Teleskop der Acht- bis Zehn-Meter-Klasse, ist aber ganz bestimmt eines der erfolgreichsten. Mit seiner Hilfe erreichte das VLT für seine Beobachtungen im nahen Infraroten auf einen Schlag ein Auflösungsvermögen – also die Fähigkeit, feine Details auseinanderzuhalten –, das besser ist als beim Hubble-Weltraumteleskop.

Die mit NACO gewonnenen wissenschaftlichen Erkenntnisse reichen von der Erforschung unseres Sonnensystems bis hin zu den am weitesten entfernten Galaxien.

Saturnmond Titan im Blick von NACO | Mit Hilfe der adaptiven Optik NACO gelangen diese sechs Ansichten des Saturnmondes Titan an sechs Nächten im Februar 2004. Bevor die Cassini-Huygens-Mission das Saturnsystem später im gleichen Jahr erreichte, lieferten diese Aufnahmen die besten verfügbaren Karten der Oberfläche des Titan.
So zeigte das Instrument das Glühen einzelner Vulkane auf dem Jupitermond Io und lieferte einige der ersten detaillierten Oberflächen- und Wetterkarten des größten Saturnmonds Titan. Besonders gut konnte NACO seine Fähigkeiten ausspielen, wenn es darum ging, Exoplaneten nachzuweisen und zu untersuchen, also Planeten, die um ferne Sterne kreisen. Ein Meilenstein war dabei die direkte Abbildung eines schwachen Lichtpunkts mit der Bezeichnung 2M1207b, hinter dem sich ein planetengroßes Objekt verbirgt, das nicht die Sonne, sondern einen anderen Himmelskörper umkreist (genauer gesagt einen Braunen Zwerg – ein Himmelskörper, der kein Stern, aber größer als ein Planet ist). Es handelte sich um die erste Aufnahme eines solchen Objekts.

Einige Jahr später nahm NACO als erstes Instrument überhaupt ein direktes Spektrum eines Exoplaneten auf, der einen Stern in unserer kosmischen Nachbarschaft umkreist. Das erlaubte es den beteiligten Astronomen, in der Atmosphäre des Exoplaneten HR 8799c nach dem Vorhandensein von Methan und Kohlenmonoxid zu forschen.

Mit dem infraroten Scharfblick von NACO konnten Forscher außerdem den Staubschleier durchdringen, der das Zentrum der Milchstraße umgibt. Durch Beobachtungen der Umlaufbahn eines Sterns, der um das galaktische Zentrum kreist, lieferte NACO die bis dahin deutlichsten Belege dafür, dass im Innersten unserer Heimatgalaxie ein Schwarzes Loch mit der Masse einiger Millionen Sonnen sitzt.

Die aktive Galaxie NGC 1097 | Dieses Nahinfrarotbild der aktiven Galaxie NGC 1097, aufgenommen mit der adaptiven Optik NACO im Jahre 2005, zeigt nie zuvor gesehene Details des komplexen Netzwerks von Filamenten, welche die äußeren Regionen mit dem Zentrum der Galaxie verbinden. Diese Beobachtungen haben den Astronomen neue Einsichten dazu verschafft, wie die supermassereichen Schwarzen Löcher im Zentrum von Galaxien mit immer neuer Materie gefüttert werden.
Bei jungen Sternhaufen wie dem Arches-Sternhaufen oder wie RCW 38 konnte NACO seine Stärken ausspielen und hunderte dicht gepackter Sterne in den Zentralregionen dieser Haufen getrennt abbilden. Somit konnten die Astronomen die frühesten Phasen der Sternentwicklung über ein breites Massenspektrum hinweg untersuchen – von Sternen mit weniger als einem Zehntel der Masse unserer Sonne bis hin zu Sternen mit mehr als 100 Sonnenmassen.

NACO ist ein VLT-Instrument der ersten Generation, das gemeinschaftlich von französischen und deutschen Forschungsinstituten in Zusammenarbeit mit der ESO entwickelt wurde. Da seine Technik immer wieder auf den neuesten Stand gebracht wurde, ist NACO auch heute noch eines der leistungsfähigsten Adaptive Optik-Systeme weltweit und ermöglicht es den europäischen Astronomen, Spitzenforschung zu betreiben. Im Verlaufe des letzten Jahrzehnts sind weitere Instrumente mit Adaptiver Optik am VLT in Dienst gegangen, und eine Reihe neuer Systeme werden derzeit entwickelt. Adaptive Optik wird ein integraler Bestandteil der nächsten Generation von Teleskopen sein, etwa des European Extremely Large Telescope (E-ELT), eines derzeit in Entwicklung befindlichen Teleskops der 40-Meter-Klasse.

MPIA / Red.

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.