Direkt zum Inhalt

Gravitationswellen: Heisenberg ein Schnippchen geschlagen

Laserinterferometer messen winzige Abstandsänderungen mit hoher Präzision. Doch in diesen Instrumenten auftretendes Streulicht beeinträchtigt und begrenzt die Messgenauigkeit. Forscher des Albert-Einstein-Instituts Hannover haben nun erstmals gezeigt, wie sich mittels Laserlicht mit maßgeschneiderten Quanteneigenschaften eindeutig zwischen Messsignal und Streulicht unterscheiden lässt. Das neuartige Messkonzept umgeht die Heisenbergsche Unschärferelation und kann zukünftig die Genauigkeit von Gravitationswellendetektoren wie GEO600 oder dem mit GEO eng kooperierenden amerikanischen Advanced LIGO-Projekt (aLIGO) steigern.
Der Laser des GEO600-ExperimentsLaden...

Die Wissenschaftler des Albert-Einstein-Instituts (AEI; Institut für Gravitationsphysik der Leibniz Universität Hannover und Max-Planck-Institut für Gravitationsphysik) in Hannover sind der letzten offenen Vorhersage von Einsteins Allgemeiner Relativitätstheorie auf der Spur – den schwer zu fassenden Gravitationswellen, die ein neues Fenster zum All öffnen werden. Die Forscher wollen die Kräuselungen der Raumzeit mit Detektoren wie GEO600 in Ruthe bei Hannover und aLIGO in den USA aufspüren. Dort arbeiten Laser, die winzige, von Gravitationswellen hervorgerufene Längenänderungen registrieren sollen. Die stetige Verbesserung der verwendeten Laser und die Minimierung von Störeinflüssen – etwa Laserstreulicht – sind daher von großer Bedeutung.

Der Laser des GEO600-ExperimentsLaden...
Der Laser des GEO600-Experiments | Das Bild illustriert den Strahlengang des Laserlichts beim deutsch-britischen Gravitationswellendetektor GEO600. Um winzige Längenänderungen in der Raumzeit messen zu können, ist ein hochstabiles Laserlicht erforderlich.
Nun haben die Physiker erstmals Laserlicht mit maßgeschneiderten Quanteneigenschaften erzeugt. Damit umgehen sie sogar die Heisenbergsche Unschärferelation, die gewöhnlich die Genauigkeit von Messungen begrenzt. "Durch den Einsatz unseres neuartigen Verfahrens lässt sich der Störeinfluss von Streulicht in Gravitationswellendetektoren zukünftig deutlich reduzieren. Damit würde GEO600 dann noch empfindlicher nach Gravitationswellen aus dem All lauschen. Nach einem erfolgreichen Einbau steht die Technik dann dem weltweiten Netz der Gravitationswellenobservatorien zur Verfügung", sagt Roman Schnabel, Leiter der Arbeitsgruppe für Quanteninterferometrie und gequetschtes Licht am AEI und Wissenschaftler im Forschungsbereich "Quantensensoren" des Exzellenzclusters QUEST.

Verschränkte Zustände spielen die Hauptrollen im neuen Messverfahren der Hannoveraner Forscher. Nach der Heisenbergschen Unschärferelation lassen sich die quantenmechanischen Eigenschaften prinzipiell nicht gleichzeitig beliebig genau bestimmen. Bei Teilchen gilt das etwa für Ort und Impuls, bei Lichtwellen für Amplitude und Phase.

Bisher verwendeten die AEI-Wissenschaftler bei GEO600 sogenanntes gequetschtes Laserlicht. Dabei verringern die Forscher die Unschärfe in der Phase oder in der Amplitude des Lichts – allerdings auf Kosten einer erhöhten Unschärfe in der anderen Messgröße. So lassen sich jeweils nur entweder die Phase oder die Amplitude sehr genau auslesen. "Für laserbasierte Präzisionsmessungen mithilfe einer einzigen Quanteneigenschaft des Lichts ist ein Quetschlichtlaser das Instrument unserer Wahl. Aber wir haben uns gefragt, ob auch in der anderen Messgröße verwertbare Informationen stecken", so Schnabel.

Daher wendeten die Forscher einen weiteren Trick an. Durch die Überlagerung von zwei Quetschlichtlaserstrahlen erzeugten sie zwei neue Laserstrahlen, die quantenmechanisch miteinander verschränkt sind. Einer der Strahlen wird zur Präzisionsmessung verwendet, der andere dient als Referenzstrahl. Durch einen Vergleich zwischen Mess- und Referenzstrahl können die Forscher nun Phase und Amplitude gleichzeitig mit verringerter Unschärfe vermessen und auf diese Weise winzige Schwankungen in beiden Größen registrieren.

"Wir können der Heisenbergschen Unschärferelation nun erstmals ein Schnippchen schlagen, weil wir die Messgrößen relativ zu einem verschränkten Referenzsystem aufnehmen", erklärt Sebastian Steinlechner, Erstautor der nun in Nature Photonics erschienenen Veröffentlichung. Er arbeitet als Doktorand in Schnabels Arbeitsgruppe im Rahmen des Sonderforschungsbereich/Transregio 7.

Damit unterdrücken die Physiker den störenden Einfluss von Laserstreulicht im Detektor. Schon einzelne Laserphotonen, die auf unerwünschten Umwegen durch den Detektor laufen, können sich untrennbar mit dem Messsignal überlagern und so die Ergebnisse verfälschen. Doch das neue Verfahren erlaubt nun eine genauere und voneinander unabhängige Messung der Phasen- und Amplitudenschwankungen des Laserlichts. Durch diese Aufspaltung in zwei unabhängige Komponenten lässt sich das Streulicht schon während der Messung direkt identifizieren. Betroffene Messdaten werden von der weiteren Auswertung ausgeschlossen – und die Genauigkeit des Endergebnisses steigt.

Der Gravitationswellendetektor GEO600 kann die erste praktische Anwendung für das neuartige Messkonzept der AEI-Wissenschaftler werden. Denn die erforderlichen Technologien sind in einfacherer Form bereits seit zwei Jahren im Detektor eingebaut und haben sich bewährt: Seit 2011 wurde die Messgenauigkeit des interferometrischen Detektors dank der Verwendung gequetschten Laserlichts bereits um rund 50 Prozent gesteigert.

Doch wird sich die Empfindlichkeit des Detektors nur dann weiter verbessern lassen, wenn die Physiker dem Streulicht auf die Spur kommen. Die Forscher sind zuversichtlich, diesen störenden Einfluss mit ihrem neuartigen Verfahren zu reduzieren und auf diese Weise die Wahrscheinlichkeit einer ersten direkten Messung der Gravitationswellen zu erhöhen.

AEI

Lesermeinung

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Leserzuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Leserzuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmer sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Lesermeinungen können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen
AEI-Hannover, 23. Juni 2013; Originalarbeit: Steinlechner, S. et al., Quantum Dense Metrology, Nature Photonics, im Druck 2013

Partnervideos