Direkt zum Inhalt

News: Kalte Kollisionen

Das Bose-Einstein-Kondensat ist der ordentlichste Atomhaufen, den man sich vorstellen kann. Doch wehe, wenn ein Atom gegen das andere kullert: Der Haufen gerät durcheinander - und ordnet sich nach einiger Zeit doch wieder ganz von selbst.
Materiewellen
Im Jahr 2001 wurde der Physik-Nobelpreis für bahnbrechende Arbeiten zur Erzeugung von Bose-Einstein-Kondensaten vergeben. Das ist – neben den bisherigen vier Aggregatszuständen fest, flüssig, gasförmig und Plasma – eine völlig neuartige Form von Materie: Wenige milliardstel Grad über dem absoluten Nullpunkt verlieren die in einem magnetischen Käfig eingesperrten einzelnen Atome eines Gases ihre Eigenständigkeit und verhalten sich wie ein einziges, quantenmechanisches Objekt, eine Art "Superatom". In diesem Anfang der zwanziger Jahre zuerst von dem indischen Physiker Satyendra Nath Bose (1894-1974) und Albert Einstein (1879-1955) in einem "Gedankenexperiment" beschriebenen Bose-Einstein-Kondensat haben alle Atome dieselben physikalischen Eigenschaften, gemeinsam besetzen sie das tiefstmögliche Energieniveau. Das Kondensat verhält sich wie eine einzige Welle, die Atome marschieren quasi im Gleichschritt.

Bisher hat man angenommen, dass die Materiewelle eines Bose-Einstein-Kondensats immer stabil bleibt und sich damit wie die Lichtwelle eines Lasers verhält (bei dem extrem reines Licht einer Wellenlänge exakt im gleichen Takt – kohärent – schwingt). Im Unterschied zum Laserlicht können die Atome eines Bose-Einstein-Kondensats jedoch miteinander kollidieren. Diese Zusammenstöße führen zu dem quantenmechanischen Effekt, den die Forscher um Markus Greiner vom Garchinger Max-Planck-Institut für Quantenoptik jetzt zum ersten Mal beobachtet haben: Der wellenartige Zustand der Materie kollabiert und lebt, unter bestimmten Voraussetzungen, kurze Zeit später wieder auf. Dieser Vorgang wiederholt sich mehrfach. "Bei Laserlicht passiert dies nicht, denn Photonen können nicht miteinander kollidieren", erläutert Markus Greiner.

Der wellenartige Zustand der Materie lässt sich – genau wie Laserlicht – durch ein Interferenzexperiment nachweisen. Dazu überlagern die Forscher Materiewellen von über 100 000 Bose-Einstein-Kondensaten miteinander. An den meisten Orten löschen sich die Wellen aus. Nur an einigen Stellen addieren sie sich konstruktiv und bilden ein Interferenzmuster (siehe Abbildung). Kollabiert die Materiewelle, so verschwindet auch das Interferenzmuster und es bleibt nur noch eine diffuse Wolke von Atomen sichtbar. Lebt die Materiewelle jedoch wieder auf, erscheint auch das Interferenzmuster von neuem. Bis zu fünf aufeinander folgende Zyklen aus kollabierender und wieder auflebender Materiewelle wurden so beobachtet.

Der Kollaps der Materiewelle wird durch zahlreiche Zusammenstöße zwischen den Atomen verursacht. Das darauffolgende Wiederaufleben der Materiewelle zeigt den Forschern jedoch eindrucksvoll, dass bei diesen ultrakalten Temperaturen Kollisionen nicht, wie man erwarten könnte, Unordnung verursachen, sondern völlig geordnet und kontrolliert ablaufen.

Wissenschaftler um Peter Zoller von der Universität Insbruck sowie um Hans Briegel von der Universität München haben kürzlich ein vielversprechendes Schema für einen Quantencomputer vorgeschlagen, das auf diesen kalten Kollisionen aufbaut. Dabei sollen Ketten von Atomen als Rechenregister kontrolliert auf einem Gitter angeordnet werden und durch kontrollierte Zusammenstöße miteinander wechselwirken. Die jetzt gelungenen Experimente demonstrieren die Funktionsweise dieser Kollisionen und sind somit ein erster wichtiger Schritt in diese Richtung.

Bei künftigen Quantencomputern versucht man als kleinste Informationseinheit zwei verschiedene Zustände eines einzelnen Quantensystems zu nutzen, das jedoch auch in einer Überlagerung der zwei Zustände existieren kann. Anders als bei herkömmlichen Computern, bei der eine Rechnung nach der anderen abgearbeitet werden muss, könnten Quantencomputer durch solche Überlagerungen gleichzeitig viele Operationen ausführen und wären damit für bestimmte Aufgaben klassischen Rechnern weit überlegen.

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

  • Quellen

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.