Direkt zum Inhalt

News: Molekulare Datenverarbeitung

Alternativen zum herkömmlichen Siliziumchip sind gefragt. Denn je aufwändiger und rechenintensiver die Aufgaben werden, desto deutlicher werden die Grenzen der derzeitigen Technik erkennbar. Deutsche und israelische Wissenschaftler haben nun ein "logisches" Molekül realisiert: Zwei aufeinanderfolgende Lichtblitze induzieren in einem Salpetersäuremolekül einen Fluoreszenzblitz. Das entspricht nach Boolscher Algebra einem logischen UND-Gatter - der erste Schritt zu einem ganzen Schaltkreis in nur einem Molekül.
So wie wir heute über "vorsintflutige" Rechner schmunzeln, die noch mit Röhren arbeiteten, werden unsere Kinder oder Enkel für unsere heutigen Computer nur ein Kopfschütteln übrig haben. Denn soviel ist klar: Der Siliziumchip als Baueinheit stößt langsam an seine Grenzen. Eine signifikante Steigerung der Rechenleistung ist nur mit anderen Technologien möglich. Eine der Zukunftsvisionen ist der Rechner auf Basis von Molekülen, die elektronische Bauteile wie Schalter und Drähte ersetzen.

Noch einen Schritt weiter gehen die Vorstellungen einer israelisch-deutschen Forschergruppe: Ein einzelnes isoliertes Molekül soll die Funktion eines gesamten logischen Schaltkreises übernehmen. Das hört sich zunächst nach komplizierten Molekülarchitekturen an, die erst mit ausgeklügelten Synthesestrategien hergestellt werden müssen. Offenbar geht es aber wesentlich einfacher: Auch gängige, simpel aufgebaute Moleküle können das Zeug zum logischen Gatter in sich tragen – man muss molekulare Phänomene nur einmal aus einem anderen Blickwinkel betrachten.

R. D. Levine vom Fritz Haber Research Center for Molecular Dynamics der Hebrew University in Jerusalem hat ein erstes Beispiel für ein "logisches" Molekül gefunden. Zusammen mit einem Team um Karl Kampa, Max-Planck-Institut für Quantenoptik in Garching, hat er eine an sich altbekannte Reaktion der Salpetersäure neu interpretiert: Wird ein Salpetersäuremolekül erst mit Infrarotlicht (IR) und kurz darauf mit ultraviolettem Licht (UV) bestrahlt, zerfällt es in zwei Bruchstücke. Die überschüssige Energie wird dabei in Form von Fluoreszenz wieder abgegeben.

Durch die Brille der Booleschen Algebra betrachtet ist das Experiment ein Analogon für den logischen Operator UND. Denn nur wenn das Moleküle sowohl die "Information" IR-Blitz als auch die "Information" UV-Blitz erhält, sendet es ein Fluoreszenzsignal als Antwort.

Nun kann man noch eine zusätzliche Variable ins Spiel bringen, indem man die Reihenfolge der Blitze, UV und IR, vertauscht. Liegt die zeitliche Verzögerung zwischen den Blitzen in der Größenordnung weniger Pikosekunden (10-12 s), kann man beide Fälle anhand der Intensität der Fluoreszenz unterscheiden. Der resultierende logische Schaltkreis ist eine komplexe Verknüpfung dreier UND- und eines NICHT-Gatters.

Einen kleinen Schönheitsfehler hat der beschriebene "molekulare Schaltkreis" allerdings noch: Das Molekül wird bei der "Datenübertragung" zerstört. Levine und seine Kollegen haben aber schon andere Kandidaten im Auge, die sich innerhalb von Pikosekunden regenerieren lassen.

Lesermeinung

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Leserzuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Leserzuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmer sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Lesermeinungen können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen
Angewandte Chemie 113: 2580 – 2582 (2001)

Partnervideos