Direkt zum Inhalt

Supernovae: Sternexplosion in einer "explodierenden" Galaxie

 Laden...
Ein internationales Team von Radioastronomen konnte die verborgene Explosion eines massereichen Sterns als Supernova in der nahen Galaxie Messier 82 (M 82) nachweisen. Obwohl dies die nächstgelegene Supernova der letzten fünf Jahre darstellt, konnte die Explosion nur mit Radioteleskopen beobachtet werden, da dichtes Gas und Staub in der Umgebung des explodierenden Sterns ihn in anderen Wellenlängen unsichtbar machten. Sonst wäre die Supernova sogar mit Amateurteleskopen zu sehen gewesen. Die Ergebnisse werden diese Woche in der Zeitschrift "Astronomy & Astrophysics Letters" veröffentlicht.

Die Galaxie M 82 gehört zum Typ der irregulären Galaxien und befindet sich in einer nahegelegenen Galaxiengruppe in einer Entfernung von zwölf Millionen Lichtjahren in Richtung des Sternbilds "Großer Bär" (Ursa Major). Sie ist ein gutes Stück kleiner und masseärmer als die Milchstraße, zeigt aber einen äußerst heftigen Sternentstehungsausbruch oder "Starburst" von nur einigen Hundert Lichtjahren Ausdehnung in ihrem Zentralbereich.

In dieser zentralen Sternfabrik werden zur Zeit mehr Sterne neu geboren als in unserem gesamten Milchstraßensystem! M 82 wird daher auch oft als "explodierende" Galaxie bezeichnet; in optischen und Infrarotaufnahmen dieser Galaxie entsteht tatsächlich der Eindruck, als ob sie komplett auseinandergerissen wird (Abb. 1). Dieses Erscheinungsbild ist das Resultat zahlreicher Supernova-Explosionen im Kernbereich der Galaxie.

Eine große Anzahl früherer Supernova-Ereignisse ist nach wie vor in Radiobildern des Zentralbereichs von M 82 sichtbar und eine neue Supernova-Explosion war längst überfällig. Ein Vierteljahrhundert haben die Astronomen inzwischen versucht, solch eine kosmische Katastrophe live zu beobachten und wunderten sich bereits, warum die Galaxie in den letzten Jahren so ruhig war.

Die neue Entdeckung erfolgte im April 2009, als Andreas Brunthaler vom MPIfR in Bonn Daten untersuchte, die erst unmittelbar zuvor (am 8. April) mit dem Very Large Array (VLA) in New Mexico/USA aufgenommen worden waren. Das VLA ist ein Radiointerferometer zusammengesetzt aus 27 Einzelteleskopen von je 25 Meter Durchmesser.

"Ich habe danach sofort die älteren Daten überprüft, die wir vom März und Mai vorigen Jahres hatten, und da war die Supernova auch, sogar heller als der ganze Rest der Galaxie", stellt Andreas Brunthaler fest. Radiodaten von M 82, die vor dem Jahr 2008 aufgenommen wurden, weisen weder im Radio- noch im Röntgenbereich irgendwelche Auffälligkeiten an der Position der Supernova auf.

Allerdings zeigen auch Beobachtungen von M 82, die im Jahr 2008 mit optischen Teleskopen speziell zu dem Zweck durchgeführt wurden, neue Supernovae aufzufinden, keinerlei Anzeichen dieser Sternexplosion. Die Supernova bleibt ebenso auf Bildern in Ultraviolett- oder Röntgenwellenlängen unsichtbar. Die Supernova ist nahe am Zentrum der Galaxie in einer sehr dichten interstellaren Umgebung explodiert.

Dies kann auch das Rätsel der langen Ruhe in M 82 erklären: Viele dieser Explosionen sind wie "unterirdische Explosionen", bei denen der helle Lichtblitz durch riesige Gas- und Staubwolken verdeckt wird, die nur von Radiowellen durchdrungen werden können. "Diese kosmische Katastrophe zeigt uns, dass wir mit unseren Radioteleskopen einen Logenplatz haben, von dem aus wir einen ansonsten unsichtbaren Teil des Universums beobachten können", sagt Heino Falcke von der Radboud Universität in Nijmegen (Niederlande).

Radiostrahlung sieht man nur bei Supernovae des Typs II, bei denen der Kern eines massiven Sterns kollabiert und dabei ein Schwarzes Loch oder ein Neutronenstern entsteht. Sie wird sichtbar, wenn sich die Stoßwelle von der eigentlichen Explosion in dichteres Material in der Umgebung des Sterns ausbreitet. Das ist normalerweise Material, das von dem massereichen Vorläuferstern der Supernova stammt und bereits vor der Explosion in Form eines intensiven Sternwinds in die Umgebung des Sterns abgeblasen wurde.

Die zehn Radioteleskope des VLBA-Netzwerks, das VLA und das Green Bank Teleskop (alle USA) sowie das 100-Meter-Radioteleskop Effelsberg wurden in der Technik der Interferometrie mit großen Basislinien ("Very Long Baseline Interferometry", VLBI) zu einem virtuellen Riesenteleskop zusammengeschaltet.

Damit konnte das Forschungsteam Bilder erzeugen, die eine ringförmige Struktur zeigen, die sich mit mehr als 11 000 Kilometern pro Sekunde ausbreitet. Das entspricht vier Prozent der Lichtgeschwindigkeit und ist typisch für die Expansion von Supernovae. "Durch die Rückrechnung dieser Expansion können wir den Zeitpunkt der eigentlichen Supernova-Explosion bestimmen," erklärt Dr. Andreas Brunthaler. "Unsere Daten zeigen, dass der Stern wohl Ende Januar oder Anfang Februar 2008 explodiert sein muss."

Nur drei Monate nach der Explosion war der Ring bereits 650-mal größer als die Erdbahn um die Sonne. Es erfordert trotzdem den extrem scharfen Blick des weltweiten VLBI-Netzwerks, eine solche Struktur aufzulösen, die lediglich so groß erscheint wie eine 1-Euro-Münze aus einer Entfernung von 13 000 Kilometern.

Das asymmetrische Aussehen der Supernova auf den VLBI-Bildern deutet darauf hin, dass entweder die Explosion selbst sehr asymmetrisch erfolgte, oder aber, dass das Material in der direkten Umgebung sehr ungleichmäßig verteilt sein muss. "Mit dem superscharfen Blick des VLBI-Netzwerks können wir die Expansion der Supernova in das dichte Material der Umgebung über die kommenden Jahre verfolgen," sagt Prof. Karl Menten, Direktor am MPIfR. "Dadurch gewinnen wir neue Erkenntnisse über beides, die Explosion selbst und das Material, in die sie sich ausbreitet."

Mit der nächsten Generation von Radioteleskopen dürften Entdeckungen wie die neue Supernova in M 82 zur Routine werden. Instrumente wie LOFAR, das "Low Frequency Array", das zur Zeit in Europa aufgebaut wird, das "Allen Telescope Array" (ATA) in den USA und vor allem das geplanten "Square Kilometer Array" (SKA), dem großen Radioteleskop der nächsten Generation werden dazu in der Lage sein, große Bereiche des Himmels systematisch und durchgehend zu beobachten,

Das Forschungsteam umfasst Andreas Brunthaler, Karl M. Menten und Christian Henkel, alle vom MPIfR in Bonn, Mark J. Reid vom CfA (Cambridge, USA), Geoffrey C. Bower von der Berkeley-Universität in Kalifornien, und Heino Falcke von der Universität Nijmegen und ASTRON (Niederlande).

Quelle: MPI für Radioastronomie

Originalarbeit:
Discovery of a bright radio transient in M82: a new radio supernova?, Brunthaler, A. et al., Astronomy & Astrophysics, 499, L17, 2009.

Lesermeinung

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Leserzuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Leserzuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmer sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Lesermeinungen können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Partnervideos