Direkt zum Inhalt

Galaktisches Zentrum: Ursprung von Schwarze-Loch-Futter simuliert

Sagittarius A*

Im galaktischen Zentrum entdeckten Astronomen kürzlich eine Gaswolke, die sich in rasantem Tempo auf das supermassereiche Schwarze Loch inmitten der Milchstraße zubewegt. Ruth Murray-Clay und Abraham Loeb vom Harvard-Smithsonian Center for Astrophysics in Cambridge, US-Bundesstaat Massachusetts, greifen die langjährigen Beobachtungen des galaktischen Zentrums nun auf und konstruieren im Computer nicht nur die Vorgeschichte, sondern auch die Zukunft der Gaswolke.

Milchstraße und Sagittarius A* | Die Milchstraße im sichtbaren Licht sowie deren Zentrum im Röntgenlicht. Auf das extrem massereiche Schwarze Loch im galaktischen Zentrum bewegt sich eine Gaswolke zu und wird dabei allmählich auseinandergerissen.

Die Wolke aus ionisiertem Gas und Staub besitzt etwa die dreifache Erdmasse und umkreist Sagittarius A*, so der Name des zentralen Schwarzen Lochs, auf einer stark elliptischen Bahn. Im Sommer 2013 wird sich die Wolke dem Schwerkraftgiganten bis auf nur 270 Erde-Sonnen-Abstände annähern, während sie am fernsten Punkt des Orbits einen Ring aus jungen Sternen streift, die das Schwarze Loch ebenfalls umkreisen. Da die Bahnebene der beobachteten Wolke mit denjenigen der Sterne übereinstimmt, vermuten Murray-Clay und Loeb, dass sie von einer Gas- und Staubscheibe um einen dieser jungen, massearmen Sterne stammt.

In ihren Computersimulationen lassen sie ein solches Gestirn zunächst am inneren Rand des Rings kreisen, wo es durch die Wechselwirkung mit einem anderen Himmelskörper aus seinem ursprünglichen Orbit geworfen wird und sich auf seinem neuen Kurs dem Schwarzen Loch annähert. Zwar sei der Stern zu klein, um ihn direkt zu beobachten, doch seine protoplanetare Scheibe würde auf der turbulenten Reise auseinandergerissen und in die Länge gezogen, wobei das Gas hell aufleuchtete – genau das beobachteten die Astronomen. Verantwortlich dafür sei ein Zusammenspiel aus Gezeitenkräften – hervorgerufen durch Sagittarius A* – und Fotoevaporation, erläutern Murray-Clay und Loeb. Bei der Fotoevaporation beschleunigt die intensive Strahlung im galaktischen Zentrum die leichten Gasatome, entreißt sie so dem Schwerkrafteinfluss des Sterns und treibt die Wolke auseinander.

Die theoretische Simulation stimme gut mit den beobachteten Eigenschaften der Gaswolke überein, berichten die beiden Forscher. Auch wie sich Helligkeit und Form der Gaswolke in Zukunft entwickeln werden, konnten Murray-Clay und Loeb mit ihrem Modell abschätzen. Im Vergleich mit künftigen Beobachtungsdaten sollte sich dann herausstellen, ob sich inmitten von Staub und Gas tatsächlich ein Stern verbirgt. Denn in diesem Fall sollte sich die Entwicklung deutlich von der einer reinen Gaswolke unterscheiden.

Die Existenz von protoplanetaren Scheiben in Galaxienkernen hätte bedeutende Folgen, schreiben Murray-Clay und Loeb. So könnten sich dort Kometen und Asteroiden bilden, aber auch Helligkeitsausbrüche durch zerreißende Planeten wären denkbar. Zudem ließen sich auf diese Weise Sterne aufspüren, die für die Teleskope sonst unsichtbar wären.

Lesermeinung

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Leserzuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Leserzuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmer sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Lesermeinungen können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen
Nature Comm. 10.1038/ncomms2044, 2012

Partnerinhalte