Direkt zum Inhalt

Sternengeschichten: Die dicken und die dünnen Scheiben der Galaxien

Wie die Galaxien aufgebaut sind und was uns ihr Aufbau über ihre Entstehung und Entwicklung verrät, erzählt die Folge des Podcasts »Sternengeschichten«.
Illustration der Milchstraße

Bei einer »dicken Scheibe« denkt man vermutlich zuerst an das, was man sich von einem Kuchen abschneiden möchte und die dünne Scheibe ist das, was man sich dann auf den Teller legt, wenn man zu viele dicke Scheiben gegessen hat. Aber in dieser Folge geht es heute natürlich nicht ums Essen. Es geht um Galaxien und darum, wie sie aufgebaut sind. Und vor allem geht es darum, was wir aus diesem Aufbau über die Entstehung und Entwicklung der Galaxien lernen können.

Die Sonne ist Teil der Milchstraße, einer Galaxie die aus ein paar hundert Milliarden Sternen besteht und bei der es sich um eine sogenannte »Spiralgalaxie« handelt. Ich habe in den vergangenen Folgen immer wieder über die verschiedenen Arten von Galaxien gesprochen und bei den Spiralgalaxien meistens erklärt, dass man dort zwei hauptsächliche Komponenten unterscheiden kann. Einerseits eine kugelförmige Zentralregion die dicht mit Sternen besetzt ist, den sogenannten »Bulge«. Dieser Bulge befindet sich inmitten einer großen Scheibe aus Sternen, die sich dort spiralförmig anordnen und weniger dicht beieinander stehen als im Bulge. Und das ist auch richtig – aber wie so oft ist es nicht das komplette Bild. Aber das haben wir erst gemerkt, als wir uns die Spiralgalaxien ganz genau angesehen haben.

Normalerweise ist das, was ich vorhin gerade gesagt habe, auch genau das, was man sehen kann, wenn man Aufnahmen von fernen Spiralgalaxien macht. Man sieht eine Scheibe mit Spiralarmen und ein helles Zentrum. Im Jahr 1979 hat dann aber der amerikanische Astronom David Burstein eine Arbeit über die Helligkeitsverteilung in lentikulären Galaxien veröffentlicht. Was lentikuläre Galaxien sind, habe ich in Folge 591 ausführlich erklärt; ist aber jetzt auch gar nicht so relevant. Viel wichtiger ist, dass sich Burstein mit der vertikalen Helligkeitsverteilung beschäftigt hat, auch wenn das vielleicht eher ein klein wenig öde klingt anstatt wichtig. Aber im Prinzip geht es um folgendes: Wenn wir ferne Galaxien untersuchen, dann können wir dort nur in ganz seltenen Fällen tatsächlich einzelne Sterne sehen. Das geht nur bei unseren nächsten Nachbargalaxien; von allen anderen sehen wir nur eine leuchtende, scheibenförmige Struktur. Aber wir sind natürlich trotzdem an den Details zum Aufbau der Galaxie interessiert. Der genaue Prozess um das zu erreichen, ist selbstverständlich sehr komplex und aufwendig, aber kurz gesagt, läuft es so: Man misst die Helligkeit der Galaxie, aber nicht im Ganzen, sondern in verschiedenen Bereichen. Man kann zum Beispiel Linien gleicher Helligkeit bestimmen; ein wenig so wie man es in der Meteorologie mit Temperatur und Luftdruck macht. Dann kann man auf den Landkarten Isothermen und Isobaren einzeichnen; in der Astronomie sind dass dann dementsprechend Isophoten. Aber die Bezeichnungen sind auch gar nicht so wichtig. Man verbindet die Punkte gleicher Helligkeit und dann kriegt man zum Beispiel eine Kurve, die das Zentrum der Galaxie umschließt, wo sich der dicht mit Sternen besetzte und damit auch sehr helle Bulge befindet. Außerhalb dieser Kurve ist es dann weniger hell, dh. dort müssen auch weniger Sterne sein, noch weiter außerhalb ist es noch weniger hell, und so weiter. Aus den Details der Struktur der Isophoten kann man dann ableiten, wie viele Sterne sich in welchem Abstand vom Zentrum befinden müssen und die Struktur der Galaxie selbst rekonstruieren.

David Burstein hat 1979 Galaxien untersucht, die wir »edge-on« sehen. Das heißt, von uns aus gesehen blicken wir genau auf die Kante der Scheibe. Wir sehen also keine Spiralarme – dafür müssten wir mehr von »oben« auf die Scheibe schauen. Aber Burstein wollte wissen, wie dick die Scheiben sind und hat dafür genau die Helligkeitsmessungen gemacht, die ich gerade erklärt habe und dann probiert, daraus mit Modellen abzuleiten, wie groß Scheibe und Bulge sind. Dabei hat Burstein gemerkt, dass das nicht so gut funktioniert, zumindest dann nicht, wenn man auch den Teil der Scheibe vernünftig berücksichtigen will, der am wenigsten hell leuchtet. Er hat nur dann ein brauchbares Ergebnis bekommen, wenn er in seinem Modell zwei Scheiben verwendet. Eine dünne Scheibe, um die herum sich auch noch eine dicke Scheibe befindet. Nur die Modelle in der die Scheibe aus diesen beiden Komponenten besteht waren in der Lage, die Helligkeitsmessungen vernünftig zu beschreiben.

Und weil die Astronomie bei der Namensgebung oft erstaunlich unkreativ ist, sind dass die Bezeichnungen, die man auch heute noch verwendet: Dicke Scheibe und Dünne Scheibe. Und jetzt könnte man sich natürlich denken, warum man da eine eigene Folge der Sternengeschichten machen muss. Dann haben die Spiralgalaxien halt eine dünne und eine dicken Scheibe? Was ist da so außergewöhnlich daran. Beziehungsweise: Wenn die dünne Scheibe quasi innerhalb der dicken Scheibe liegt, ist dass dann nicht eigentlich immer noch nur eine Scheibe?

Das sind gute Fragen und wie üblich ist die Sache nicht so einfach, wie sie auf den ersten Blick klingt. Die Sterne in einer Galaxien sind ja nicht gleichmäßig verteilt. Ich habe zu Beginn schon erwähnt, dass es den Bulge gibt, in dem die Sterne viel dichter beieinander stehen als in der Scheibe. Und in der Scheibe gibt es die Spiralarme aus Sternen und die Bereiche dazwischen, wo sich weniger Sterne befinden. Die dicke und die dünne Scheibe unterscheiden sich auf eine ähnliche Weise: Die meisten Sterne einer Galaxie findet man in der dünnen Scheibe; sie ist quasi das, was wir sehen, wenn wir eine Spiralgalaxie anschauen. In der dicken Scheibe gibt es viel weniger Sterne, auch wenn sie ausgedehnter ist. In der Milchstraße hat die dünne Scheibe eine Dicke von etwa 1000 Lichtjahren und dort befinden sich 95% aller Sterne, die nicht zum Bulge gehören. Die dicke Scheibe ist zwischen 2000 und 3600 Lichtjahren dick. Aber viel interessanter ist, dass sich dünne und dicke Scheibe nicht einfach nur durch die Anzahl der Sterne unterscheiden. Die Sterne der dicken Scheibe unterscheiden sich vor allem durch ihre Bewegung, ihr Alter und ihre chemische Zusammensetzung. Sie enthalten weniger schwere Elemente (also Elemente, die kein Wasserstoff oder Helium sind) als die Sterne in der dünnen Scheibe und sie sind alle viel älter. Die Sterne in der dicken Scheibe sind also grundlegend anders als die der dünnen Scheibe und wenn wir wüssten, warum es in den Galaxien diese beiden Sterngruppen in den beiden Komponenten der Scheibe gibt, dann könnten wir daraus viel über die Entstehung und Entwicklung der Galaxien lernen.

Man hat einige Hypothesen entwickelt, warum das so sein könnte. Zum Beispiel, weil Galaxien ja wachsen, in dem sie mit anderen Galaxien verschmelzen. Die dicke Scheibe könnte ein Überrest so einer alten Galaxie sein. Oder die Sterne der dicken Scheibe könnten früher aus der jungen Scheibe hinaus geworfen worden sein, was vor allem die Unterschiede in ihrer Bewegung erklären würde. Es gibt noch weitere Erklärungen, die alle aber nicht wirklich exakt passen. Im Juni 2025 haben Daten des James-Webb-Weltraumteleskops dann neue Erkenntnisse gebracht. Man hat 111 Galaxien beobachtet, in unterschiedlichen Distanzen. Teilweise hat das Licht bis zu 11 Milliarden Jahren bis zu uns gebraucht; wir haben also Galaxien gesehen, die im frühen Universum entstanden und noch nicht so weit entwickelt sind und Galaxien, die uns näher sind und die sich schon so lange entwickelt haben wie die Milchstraße. Die Astronominnen und Astronomen haben dabei Galaxien gefunden, die eine dicke und dünne Scheibe haben – und Galaxien, die nur eine einzige Scheibe besitzen. Eine genaue Analyse der Daten hat gezeigt, dass eine typische Galaxie zuerst mit nur einer Scheibe gebildet wird, nämlich der dicken Scheibe. Erst später entwickelt sich dann daraus auch eine dünne Scheibe. Das läuft vermutlich so: Eine junge Galaxie hat in ihrer – einen – Scheibe jede Menge Gas, das turbulent durch die Gegend wirbelt. Aus diesem Gas entstehen jede Menge Sterne, die dann das turbulente Gas stabilisieren. Die Bewegung von Gas und Sternen wird stabiler und sie sammeln sich einer dünneren Scheibe an; das, was zurück bleibt ist dann die dicke Scheibe. Und weil sich das meiste Gas in der dünnen Scheibe befindet, können dort weiterhin neue Sterne entstehen, während die dicke Scheibe nur von den alten Sternen bevölkert wird, und keine jungen mehr nachkommen. Wann dieser Wechsel von einer zu zwei Scheiben im Leben einer Galaxie passiert, hängt von ihrer Masse ab. Je mehr Masse, desto schneller passiert es, denn desto schneller können ausreichend viele Sterne entstehen, die das Gasstabilisieren.

Es gibt vieles, was wir noch nicht über Galaxien wissen; auch über unsere eigene Milchstraße. Galaxien sind eben wirklich langlebige Objekte und wir sehen immer nur einen kurzen Ausschnitt aus ihrem Jahrmilliarden langen Leben. Aber wenn wir genau genug hinschauen, dann können wir Spuren der Vergangenheit finden; Spuren, wie die Aufteilung der Sterne in eine dicke und eine dünne Scheibe. Spuren, die uns zeigen, was vor Milliarden Jahren passiert ist und auch in der Milchstraße passiert sein muss.

Alle Podcasts im Überblick

Noch mehr hören? Die besten deutschsprachigen Wissens-Podcasts gibt es auf Spektrum.de. Auf dieser Seite finden Sie eine Übersicht.

Schreiben Sie uns!

Wenn Sie Feedback, Lob oder Kritik zu diesem Podcast haben, können Sie die Redaktion per E-Mail kontaktieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.