Direkt zum Inhalt

Hemmes mathematische Rätsel: Die Hockeyweltmeisterschaft

Origami-Fußball mit FingerLaden...

Am Montag, den 8. März 2010 fand Otto Spaniol von der RWTH Aachen im Sportteil der Aachener Zeitung eine Tabelle der Hockeyweltmeisterschaft in New Delhi nach dem 4. Spieltag der Gruppe A. Sie lautete:

Spiele+0Punkte
Niederlande431010
Deutschland42208
Südkorea42117
Neuseeland42026
Argentinien41033
Kanada40040
(+ = gewonnen = 3 Punkte, 0 = unentschieden = 1 Punkt, – = verloren).

Jede Mannschaft spielt genau einmal gegen jede andere.

Am vierten Spieltag hat Neuseeland gegen Argentinien 0:1 verloren. Spaniol fragte sich: Welche Mannschaften haben an den ersten vier Spieltagen gegeneinander gespielt und wer hat die Spiele gewonnen? Wie lauten die Partien des fünften und letzten Spieltags?

Deutschland hat gegen die Niederlande und gegen Südkorea unentschieden gespielt. Da Neuseeland gegen Argentinien verloren hat, aber zweimal gewann, hat Neuseeland gegen Kanada und gegen Südkorea gewonnen. Daher hat Neuseeland gegen die Niederlande verloren, und die Niederlande müssen ihre beiden restlichen Siege gegen Kanada und Argentinien erzielt haben. Im letzten Spiel müssen die Niederlande also noch gegen Südkorea antreten. Deutschland hat offenbar gegen Argentinien und Kanada gewonnen und muss im letzten Spiel noch gegen Neuseeland spielen. Das letzte Spiel des fünften Spieltags ist damit Kanada gegen Argentinien. Kanada hat gegen alle vier anderen Mannschaften verloren.

Damit lautet die Ergebnistabelle nach dem vierten Spieltag:

NLDROKNZRACDN
Niederlande (NL)*0+++
Deutschland (D)0*0++
Südkorea (ROK)0*++
Neuseeland (NZ)+*+
Argentinien (RA)+*
Kanada (CDN)*
(+ = gewonnen, 0 = unentschieden, – = verloren).

Die Partien Niederlande – Südkorea, Deutschland – Neuseeland und Argentinien – Kanada stehen noch aus.

Lesermeinung

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnervideos