Direkt zum Inhalt

Hemmes mathematische Rätsel: Was ist die Summe der Quersummen aller Zahlen von 1 bis 1.000.000?

Können Sie diese Summe aus Quersummen berechnen?
Ein Haufen Pappkärtchen mit verschiedenen Ziffern und Rechensymbolen.

Leo Moser (1921–1970) war Mathematiker und ein ausgezeichneter Schachspieler, Magier und Erfinder von Denksportaufgaben. 1950 veröffentlichte er in der Zeitschrift »Scripta Mathematica« ein hübsches Quersummenrätsel.

Die Quersumme einer Zahl ist die Summe ihrer Ziffern. So hat beispielsweise die Quersumme von 1955 den Wert 1 + 9 + 5 + 5 = 20. Wie groß ist die Summe der Quersummen aller ganzen Zahlen von eins bis einer Million?

Die Lösung ist schnell zu finden, wenn man zusätzlich zu den Zahlen von 1 bis 1 000 000 noch die 0 hinzunimmt, die ja die Summe nicht verändert. Man schreibt die Liste der Zahlen zweimal nebeneinander, einmal von 0 bis 999 999 und einmal von 999 999 bis 0. Die 1 000 000 selbst betrachten wir erst zum Schluss.

000000	 999999
000001	 999998
000002	 999997
000003	 999996
000004	 999995
  …        …

Die Quersumme jedes Zahlenpaares ist immer 54. Die beiden Reihen haben also die Gesamtquersumme von 1 000 000 · 54, eine Reihe folglich von 27 000 000. Nun muss man noch die Quersumme von 1 000 000, nämlich 1, hinzuzählen, und man erhält 27 000 001.

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.