

NwT – Stützpunkt MeRK

Erste Schritte zum Roboterbau

Vorbemerkungen

Das vorliegende Manuskript ist sowohl für Lehrkräfte als auch für Lernende, die mit dem Gerätesatz arbeiten wollen, gedacht. Das Papier kann das Unterrichtsmaterial nur ergänzen und soll eine Hilfe für den Aufbau und die Programmierung der Roboter sein. Insbesondere folgt es keinem Unterrichtsablauf, sondern der Fachsystematik des Baukastens.

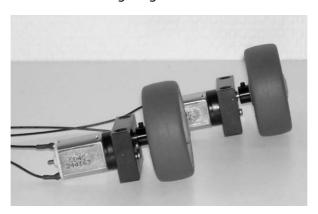
Für die Programmierung sind elementare Kenntnisse in der Sprache C++ nötig. Hier wird nur auf die Spezialbefehle, die zur Steuerung des Roboters benötigt werden, eingegangen.

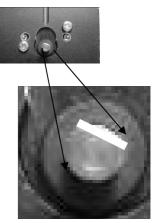
Inhaltsverzeichnis

1. Bauanleitung Fahrzeug (ohne Sensoren)	3
Räder auf Motoren montieren	
Stützrad montieren	3
Aufbau der mechanischen Teile des Fahrzeugs	4
Controllerboard anbringen	
2. Softwareinstallation	
Reihenfolge	
Programmierung	
3. Tastsensor	
Sensoren montieren und anschließen	
Sensoren testen	
4. Abstandsensor	
Sensoren montieren und anschließen	
Sensoren testen	
5. IR-Reflex-Sensor	
Sensoren montieren und anschließen	
Sensoren testen	
6. Bestückungsplan	
Schraubentüte M2 / M3	
Schraubentüte M6	
Koffer für den Klassensatz	
7. Übersicht über die Bauteile	
8. Datenblatt Miniboard	
9. Grundelemente von C++	
10. Programmierung Methoden der Klasse MiniBoard	16

1. Bauanleitung Fahrzeug (ohne Sensoren)

Räder auf Motoren montieren


Bauteile


- 2 Motore
- 2 Madenschrauben M3x5

Montage

- 1. Die Madenschrauben werden auf die Achsen aufgesetzt und mit drei Umdrehungen fixiert.
- 2. Dann werden die Räder so auf die Achsen gesteckt, dass die Madenschrauben auf die abgeflachte Seite der Achse treffen.
- 3. Die Madenschrauben werden angezogen.

Ergebnis

Stützrad montieren

Bauteile

- 1 Halteplatte 20 x 25
- 1 Stützrad
- 2 Beilagscheiben D6

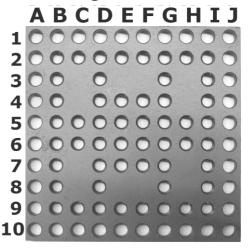
Zusatzwerkzeug:

Gabelschlüssel

Montage

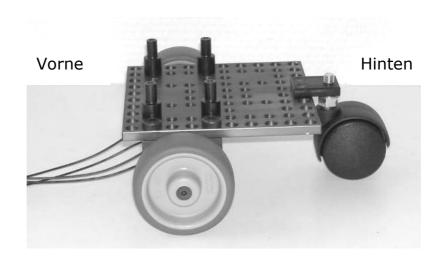
- 1. Die Beilagscheiben werden als Abstandhalter benutzt und auf den Gewindestift gesteckt.
- 2. Danach wird der Gewindestift fest in das einzeln liegende Gewinde der rechteckigen Halteplatte eingeschraubt.

Ergebnis


Aufbau der mechanischen Teile des Fahrzeugs

Bauteile

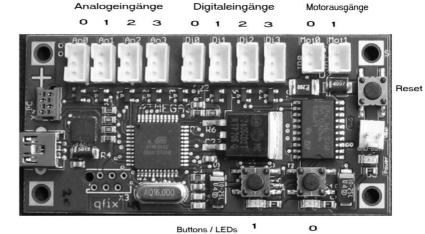
- 2 vormontierte Motoren
- 1 vormontiertes Stützrad
- 1 Basisplatte
- 4 Platinenhalter


6 Inbusschrauben M6x10

Montage

- 1. Die Platinenhalter werden in die Gewinde B2, B5, I2 und I5 eingeschraubt.
- 2. Die Motoren werden von unten mit den Schrauben M6x10 in die Bohrungen A2 & A5 bzw. J2 & J5 neben den Abstandshaltern angeschraubt. Achtung: Die Räder müssen so montiert werden, dass die Radachsen unten aus der Halterung kommen, dass also die "Bodenfreiheit" möglichst groß ist.
- 3. Die Anschlusskabel sollten von vorne frei zugänglich sein.
- 4. Die Halteplatte des Stützrades wird von oben mittig auf die Basisplatte bei E10 & F10 gelegt und dann von unten mit den Schrauben M6x10 verschraubt.

Ergebnis

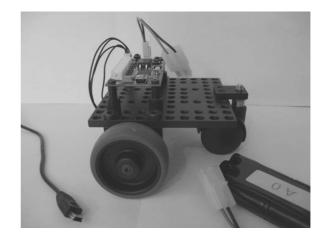


Controllerboard anbringen

Motoren anschließen und testen

Bauteile

- 1 Controllerboard
- 4 Inbusschrauben M3x6
- 1 12V Versorgungskabel
- 1 Akku



Montage

- 1. Das Controllerboard wird mit den Inbusschrauben M3x6 so auf die vier Platinenhalter geschraubt, dass die Buttons in der Fahrzeugmitte liegen.
- die Motoren an die Anschlusse Ausgänge anschließen Motorausgang 0= linker Motor, Motorausgang 1= rechter Motor
- 3. Software und Treiber nach Anleitung installieren
- 4. Rechner und Board mit dem USB-Kabel verbinden
- 5. Die Datei **MotorTestMeRK.cc** öffnen mit der Taste F5 in eine ausführbare Datei übersetzen (compilieren) und mit F6 aufs Board übertragen. Der Programmstart und das Überspielen eines Programms sind nur nach Drücken der Reset-Taste möglich. Dieser Zustand wird durch das schnelle Blinken von LED 0 angezeigt.
- 6. das 12 V Versorgungskabel wird mit dem Akku verbunden und am Controllerboard eingesteckt.
- 7. Test der Motoren durch Drücken von:

Button 0 linker Motor vorwärts
Button 1 rechter Motor vorwärts
Button 0 und 1 beide Motore vorwärts

Ergebnis

Programmierung:

Der Befehl car.button(i) liefert den Wert "true", wenn der Button mit der Nummer i gedrückt ist.

Auflage 2 5

2. Softwareinstallation

Wichtig: USB Adapter erst in Schritt 4 anschließen.

Dir hier beschriebene Software inklusive aller Handbücher ist downloadbar (Adresse in Moodle, Umfang ca. 60MB)

Reihenfolge

- 1. Start des Programmes **qfixSoftware-1.4.0.msi**.
- 2. Im Startmenue unter → Alle Programme → qfix Software den Menuepunkt → install USB driver aufrufen
- 3. NEU-Start des PC
- 4. USB Adapter anschließen
- 5. Im Gerätemanager unter Anschlüsse (COM und LPT) den Eintrag silicon Labs CP210x USB to UART bridge auswählen und COM-Port ablesen.
- 6. Im Startmenue unter → Alle Programme → qfix Software den Menuepunkt portswitch aufrufen und der USB Schnittstelle den eben ermittelten COM-Port zuweisen.
 - (bei PC mit mehreren USB Anschlüssen, kann jeder USB eine andere Einstellung erfordern, deshalb bitte immer denselben USB nutzen oder ab Schritt 5 erneut durchführen.)

Programmierung

Lege im Heft eine Übersicht der Programmbefehle (Glossar) an. Achte dabei auf Groß-Kleinschreibung.

Rufe im Startmenue unter → Alle Programme → qfix Software → examples → MiniBoard die Datei myTest.cc auf (sie wird mit dem Programm Programmers Notepad bearbeitet).

Speichere sie **sofort** unter einem neuen Namen (ohne Umlaute und ohne Sonder- oder Leerzeichen) in deinem FSG-Verzeichnis ab.

Durch das neu zu schreibende Programm wird der Abschnitt ersetzt. // my program // for example: //

hinter jeder Zeile soll ein Kommentar eingefügt werden Dieser beginnt mit // und wird nicht übersetzt.

Mit der Taste F5 wird das Programm in eine dem, Microcontroller verständliche Datei übersetzt (compiliert).

Bei Erfolg erscheint am Bildschirm die Meldung Process Exit Code: 0

Nach Reset am Miniboard (Button 0 blinkt schnell) wird mit der Taste F6 das Programm an den Microcontroller übertragen.

Bei Erfolg erscheint am Bildschirm die Meldung Process Exit Code: 0

3. Tastsensor

Sensoren montieren und anschließen

Bauteile

- 2 Tastsensoren
- 2 Halteplatten (2 Gewinde M6, 2 Gewinde M2)
- 4 Kreuzschlitzschrauben M2x10
- 4 Inbusschrauben M6x10

Zusatzwerkzeug:

Kreuzschlitzschraubendreher

Montage

- 1. Die Tastsensoren mit den Kreuzschlitzschrauben auf den Halteplatten montieren.
- 2. Die Halteplatten werden in der äußersten Lochreihe (B1,C1 & H1, I1)mit M6x10 Schrauben an die Basisplatte geschraubt.
- 3. Anschluss der Sensoren an die digitalen Eingänge:

Linker Tastsensor an Digitaleingang 0 Rechter Tastsensor an Digitaleingang 1

Ergebnis

Sensoren testen

Der Taster, der am Digitaleingang i angeschlossen ist, kann mit folgendem Befehl abgefragt werden:

car.digital(i); übergibt "true" wenn der Taster **nicht** gedrückt ist. Ein gedrückter Taster den Wert 0. Vorsicht: die Buttons sind gerade umgekehrt programmiert.

Programm Sensor-Taster.cc:

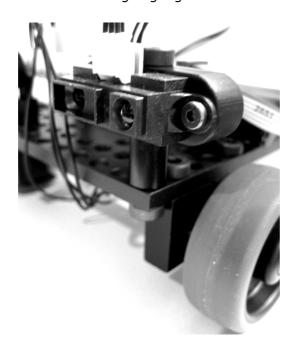
keine Taster gedrückt keine LED linker Taster gedrückt LED 0 rechter Taster gedrückt beide Taster gedrückt beide LED

Programm Sensor-Taster-Motor.cc:

Fahrzeug "parkt ein"

4. Abstandsensor

Sensoren montieren und anschließen


Bauteile

- 2 Abstandsensoren
- 2 Grundplatten
- 4 Inbusschrauben M3x6
- 2 Gewindehülsen 15 mm
- 2 Inbusschrauben M6x20
- 2 Inbusschrauben M6x10
- 2 Signalkabel

Montage

- 1. Die Sensoren werden mit Schrauben M3x6 auf ihre Grundplatten geschraubt.
- 2. Durch die Durchgangslöcher werden die Schrauben M6x20 mit den Gewindehülsen verschraubt.
- 3. Diese werden von unten mit M6x10 an der äußersten Reihe der Bohrungen in der Basisplatte befestigt.
- 4. Anschluss der Sensoren mit Signalkabeln: linker Sensor an Analogeingang 0 rechten Sensor an Analogeingang 1

Ergebnis

Sensoren testen

Programm Sensor-Abstand.cc

Wenn der Abstand 0 geringer ist als Abstand 1, dann leuchtet LED0, sonst LED1

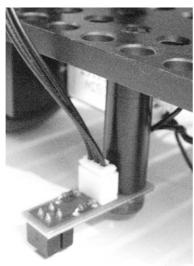
Nutzung

Der Rückgabewert der Sensoren liegt zwischen 0 und 255, wobei zu großen Entfernungen kleine Rückgabewerte gehören.

Werden die Abstandsensoren etwas seitlich ausgerichtet, so kann mit dem Programm **vehicle.cc** ein fertiges Ausweichprogramm getestet werden.

5. IR-Reflex-Sensor

Sensoren montieren und anschließen


Bauteile

- 2 IR-Reflex-Sensoren
- 2 Verlängerung 30mm
- 2 Inbus-Schraube M6x10
- 2 Signalkabel

Montage

- 1. Die Verlängerung wird in der zweiten Lochreihe von unten in die Basisplatte geschraubt.
- 2. Mit der M6x10 Schraube wird der IR-Sensor an die Verlängerung geschraubt.
- 3. Das Signalkabel wird an die Analogeingange 2 bzw. 3 angeschlossen.

Ergebnis

Sensoren testen

Test des an Analogeingang 2 angeschlossenen Sensors:

Programm Sensor_IR_reflex.cc

Kalibrieren:

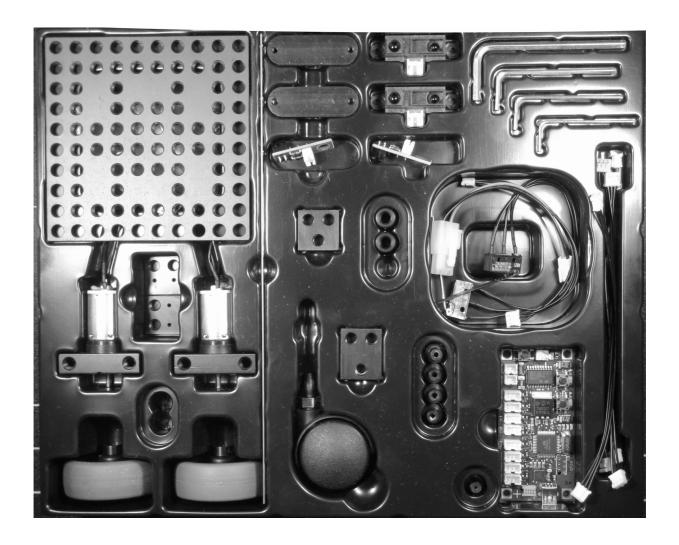
Heller Hintergrund Button 1: speichern Dunkler Hintergrund Button 1: speichern

Messen:

Nach Drücken von Button 1: Messung durch die Sensoren bei langsamer Vorwärtsfahrt.

Anzeige:

"Hell" => LED 0 "Dunkel" => LED 1


Nutzung

Der Rückgabewert der Sensoren liegt zwischen 0 und 255, wobei zu hellen Flächen (hoher IR- Reflexionsgrad) kleine Rückgabewerte gehören.

6. Bestückungsplan

Unter der Basisplatte befinden sich zwei Tüten mit Schrauben. Der Inhalt kann durch wiegen kontrolliert werden und ist auf der Folgeseite beschrieben.

Schraubentüte M2 / M3

Wägekontrolle ergibt: **8,4 g**

Madenschrauben

3 M3x5

Kreuzschlitzschrauben

1 M2x6

4 M2x10

Inbusschrauben

10 M3x6

Schraubentüte M6

Wägekontrolle ergibt: 90,8g

Inbusschrauben

2 M6x8

15 M6x10

3 M6x20

Beilagscheiben

2 D6

2 Verlängerung 30mm

Bezeichnungen der Schrauben

Madenschrauben:	Inbusschrauben:
Gewindestift ohne Kopf	Innensechskantkopf

Bemassung der Schrauben:

Erste Zahl: Durchmesser (in mm) Zweite Zahl: Gewindelänge (in mm)

Schon verbaut sind: Kreuzschlitzschrauben

4 M2x6

Senkkopfschrauben

2 M4x10

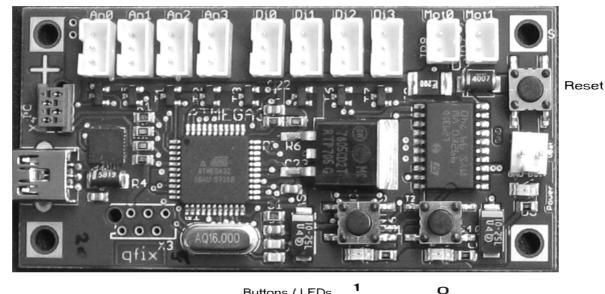
M6x10

Koffer für den Klassensatz

- **11** Kleinteilschalen
- **11** USB-Kabel
- **2** Schraubendreher Kreuzschlitz
- **2** Gabelschlüssel 10mm
- 2 Steckdosenleisten (6-fach)
- **11** Netzgeräte
- 11 Doppelpacks Akku
- 2 CD-ROM

7. Übersicht über die Bauteile

Anzahl	Bezeichnung	Foto / Beschreibung	Position
1	Basisplatte	ABCDEFGHIJ 100000000000000000000000000000000000	Formteil links
1	Controllerboard	Ang Ang Ang Dig Dig Dig Hotel Dig Hotel Dig Hotel Dig Dig Hotel Dig Dig Dig Dig Dig Dig Hotel Dig	Formteil rechts
2	Abstandsensor		Formteil rechts
2	Grundplatten für Abstandsensoren	3 3	Formteil rechts
2	IR-Reflex-Sensor	2	Formteil Rechts (beim Abstands- sensor)
2	Tastsensor	Mazi Mazi	CD-Fach


1	Halteplatte 20x25 (3 Gewinde M6)	0	Formteil Rechts
1	Halteplatte 20x20 (3 Gewinde M6)	66	Formteil rechts
2	Halteplatte 20x20 (2 Gewinde M6)		tiefes Formteil links
1	12V Versorgung		CD-Fach
4	Signalkabel (3adrig)	FIGURE CO.	Formteil rechts
2	Räder auf Achse montiert		Formteil links
2	Motore in Halte- platte montiert		Formteil links
1	Haltegummi für Geräte		Um die BOX her- um
2	Gewindehülse 15mm		Formteil rechts (eines bleibt frei)
4	Platinenhalter 20mm		Formteil rechts
1	Fahnenhalter		Formteil rechts unten

8. Datenblatt Miniboard

Analogeingänge Digitaleingänge Motorausgänge O 2 3 O 2 3 O

Buttons / LEDs

I/O Ports

- 4 Analogeingänge z.B. für Abstandsensoren oder Lichtsensoren
- 4 Digitaleingänge z.B. für Tastsensoren

diese sind auch nutzbar als

- 8 Powerausgänge mit 5 V (geregelt) bis 100 mA (TTL-Pegel)
- 2 Motorausgänge für Gleichstrommotoren bis 600 mA
- 2 Buttons (on board)
- 2 LED (on board)
- 1 Reset-Taste

Sensor-Eingänge / TTL-Ausgänge

Ausgang +5V (schaltbar) GND (Masse) Sensoreingang

Button

LED

LED: eine dunkle LED hat den Wert 0, eine leuchtende LED hat den Wert 1.

Button: ein nicht gedrückter Button hat den Wert 0, ein gedrückter Button hat den Wert 1. Vorsicht: die Tastesensoren sind gerade umgekehrt programmiert.

Reset-Taste

Programmstart und Überspielen eines Programms sind nur nach Drücken der Reset-Taste

Dieser Zustand wird durch das schnelle Blinken von LED 0 angezeigt.

Hinweis: Falls man das Drücken des Resetknopfs vergessen hat, reicht das ein- und ausstecken des USB-Kabels. Danach nochmals versuchen das Programm zu überspielen.

9. Grundelemente von C++

Am unteren rechten Eck des Editorfensters kann die Hervorhebung von Befehlen die Zeilennummerierung, Leer- und Steuerzeichen sichtbar gemacht werden.

Im linken Fenster sind Befehlsstrukturen abgelegt. Unter C++ sind z.B. die Strukturen für Schleifen nutzbar.

Zähler erhöhen	Erhöht den Wert von i um 1
++i Zähler senken	Senkt den Wert von i um 1
i	Some dem Weite vom Fam 1
	ngsschleifen
while (Bedingung)	Die Befehle innerhalb der geschweiften
{	Klammer werden so lange ausgeführt wie
Anweisung;	Bedingung = true erfüllt ist.
}	Die Abfrage wird geprüft bevor der Anwei-
	sung ausgeführt wird. Hinweis: Bei der while Schleife kann in der
	runden Klammer nicht gerechnet werden.
do	Die Befehle innerhalb der geschweiften
{	Klammer werden so lange ausgeführt wie
Anweisung;	Bedingung = true erfüllt ist.
}	Die Anweisung wird ausgeführt, bevor die
while (Bedingung);	Abfrage geprüft wird. Somit wird mindes-
	tens einmal die Anweisung innerhalb der
7.11	Schleife ausgeführt.
	hleifen
for (Startbedingung; Stoppbedingung;	Der Zähler wird von der Startbedingung so
Veränderung) {	lange erhöht bis die Stoppbedingung er- reicht ist. Bei jedem Zählschritt wird der
\ Anweisung;	Anweisung ausgeführt.
}	7 tiwelsung ausgerung.
Verzw	eigung
if (Bedingung)	Eine If-Schleife wird verwendet, um zu
{	entscheiden, ob Befehle ausgeführt wer-
Anweisung1;	den.
}	Wenn Bedingung = true ist, dann wird An-
else	weisung1 ausgeführt, andernfalls Anwei-
1 Anweisung2;	sung2.
Anweisungz, }	
switch (Variable)	Verzweigung in Abhängigkeit vom Wert
{	einer Variable:
case (Wert1):	
Anweisung1;	Wenn sie den Wert1 annimmt wird Anwei-
break;	sung1 ausgeführt (bis break)
(Wort2):	Wann sie den Wart?
case (Wert2):	Wenn sie den Wert2 annimmt wird Anwei-
Anweisung2; break;	sung2 ausgeführt (bis break)
bicuk,	Andernfalls Anweisungx
default:	
Anweisungx;	Hinweis:
break;	Bei beim case(Wert) kann der Wert nicht
}	ausgerechnet werden. Es muss dort eine
	feste Zahl stehen.

10. Programmierung Methoden der Klasse MiniBoard

Die Tabelle beschreibt die Klasse MiniBoard sowie deren Methoden.

Um diese Methoden aufrufen zu können, muss ein Objekt (eine Instanz) der Klasse existieren. Durch den Befehl **Miniboard car;** wird ein Objekt "car" der Klasse MiniBoard erzeugt, dieses erhält damit die Methoden der Klasse MiniBoard. (car könnte durch eine beliebige andere Bezeichnung wie z.B. MeRK ersetzt werden). Durch das Anlegen des Objektes wird es automatisch aufgerufen und initialisiert. Die Motorgeschwindigkeiten werden auf 0 gesetzt, alle LEDs sind aus, alle Power-Ausgänge sind angeschaltet.

Einige Methoden geben einen Wert zurück. In der Tabelle ist der Typ des Rückgabewertes angegeben.

angegeben.		
Methoden der Klasse	Typ des	Erklärung
MiniBoard	Rückga-	
(Auf Groß- und Kleinschrei-	bewertes	
bung achten!!)		
ledOn(i)	void	Schaltet die LED mit Index i an
ledOff(i)	void	Schaltet die LED mit Index i aus
ledsOff()	void	Schaltet alle LEDs aus.
led(i, Bedingung)	void	Schaltet die LED mit dem Index i an, falls Bedingung=true, bzw. aus, falls Bedingung=false. i muss 0 oder 1 betragen.
button(i)	bool	Liefert true zurück, falls der Button mit dem Index i gedrückt ist, ansonsten false. i muss 0 oder 1 betragen.
waitForButton(i)	Void	Wartet, bis der Button mit dem Index i gedrückt und wieder losgelassen wurde
motor(i, speed)	Void	Setzt den Motor mit dem Index i auf den Wert speed, speed liegt im Bereich -255 bis 255.
motors(speed0,speed1)	Void	Setzt beide Motoren auf die entsprechenden Werte speed0 und speed1
motorsOff()	Void	Schaltet beide Motoren aus.
analog(i)	int	Liefert den Wert des Analog-Eingangs mit dem Index i zurück. Der Rückgabewert liegt im Bereich 0 bis 255.
digital(i)	bool	Liefert true zurück, falls der Digital-Eingang mit dem Index i high ist, ansonsten false
powerOn(i)	void	Schaltet den Power-Ausgang mit Index i an
powerOff(i)	void	Schaltet den Power-Ausgang mit Index i aus
power(i, Bedingung)	void	Schaltet den Power-Ausgang mit dem Index i an, falls Bedingung=true, bzw. aus, falls Bedingung=false.
ledMeter(i)	void	Zeigt den übergebenen Wert i im Bereich 0 - 255 mittels der LEDs an.
sleep(s)	void	Wartet s Sekunden lang.
msleep(ms)	void	Wartet ms Millisekunden lang.

Folgende Datentypen werden hierbei verwendet:

Тур	Kürzel /	Erklärung
	Variable	
void		Kein Wert
' ' ' ' ' '		(wird z.B. bei Funktionen oder Methoden ohne Rückgabewert benutzt)
bool	Bedingung	Boolescher Wert (true oder false)
int		ganzzahliger Wert (-32767 – 32768)
	i	gibt die Nummer des Ein-, oder Ausgangs an. Sie muss bei den Eingängen im Bereich 0 bis 3 und bei den Ausgängen im Bereich 0 bis 7 liegen.
	Speed	gibt die Geschwindigkeit an, und darf zwischen -255 und 255 liegen.
	s, ms	Zeit in s bzw. ms