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Der SuW-Beitrag von  Simon D. M. White mit dem Titel „Aufbau und Zerstörung – über die 
Rolle der Gravitation bei der kosmischen Strukturbildung“ ist das hohe Lied der Gravitation. 
Wie es schon im ersten Satz des Beitrags heißt, beherrscht die Gravitation den gesamten 
Kosmos.  
Das ist Grund genug, sich über den Schulstoff hinaus etwas näher mit ihr zu beschäftigen. Der 
Schüler Daniel fragt den Student Jan über die Rolle der Gravitation im Kosmos aus. 
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Künstlerische Darstellung der Sonde Gravity B, die die Erde umkreist, um die durch die Erde gekrümmte Raum-
zeit zu vermessen. (In diesem Modell entspricht der Raum ohne Masse (der eigentlich nicht existiert) einer 
Ebene.). ©: NASA - http://www.nasa.gov/mission_pages/gpb/gpb_012.html, Public Domain,  
https://commons.wikimedia.org/w/index.php?curid=4072432.  
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Jan: Du liest etwas über Aufbau und Zerstörung im Kosmos? 
Daniel: Ja. Am meisten faszinieren mich die Schwarzen Löcher. Wenn ich mir vorstelle, dass 
diese unheimlichen Dinger alles in sich hineinsaugen, und dass das alles unwiederbringlich 
verschwunden ist… 
Jan: Du scheinst die Schwarzen Löcher für gigantische Staubsauger zu halten. Ganz so ist das 
nicht. 
Daniel: Ich muss zugeben, dass ich nur sehr unklare Vorstellungen habe. Ich würde es aber 
gern genau wissen.  
Jan: Dazu müssten wir uns etwas genauer mit dem Gravitationsfeld beschäftigen.  
Daniel: Gern. 
Jan: Na, Dann los! Weißt du, wie man die Anziehungskraft zwischen zwei Punktmassen M 
und m, die einen Abstand r voneinander haben, berechnen kann? 

Daniel: Die Kraft wird gegeben durch    
r

GmMF
2

= , 

wobei G die Gravitationskonstante ist. 
Jan: Was ist, wenn es sich um zwei ausgedehnte Körper handelt? 
Daniel: Dann muss man unter r den Abstand ihrer Schwerpunkte verstehen. 
Jan: Das ist nur die halbe Wahrheit. 
Daniel: Wieso? 
Jan: Die Formel gilt im Allgemeinen nur, wenn r groß ist verglichen mit der größten 
Abmessung der Körper.  
Daniel: Die Anziehungskraft des Eiffelturms auf einen vorbeifliegenden Hubschrauber 
kommt also nur richtig heraus, wenn er genügend weit entfernt ist. 
Jan: Genau so ist es. Allerdings gilt keine derartige Einschränkung, wenn es sich bei den 
ausgedehnten Körpern um homogene Kugeln handelt oder um solche inhomogenen Kugeln, 
deren Dichte nur vom Abstand vom Zentrum abhängt. 
Daniel: Da viele Himmelskörper einen schalenartigen Aufbau wie unsere Erde haben, kann 
man also bei ihnen die Formel bedenkenlos verwenden und immer so tun, als ob das 
Gravitationsfeld von einer punktförmigen Masse erzeugt wird? 
Jan: Ja, sofern man von der Abplattung absehen kann. - Doch nun stell dir vor, M wäre ein 
großer Himmelskörper, der ein großes Gravitationsfeld um sich herum besitzt, und  m ein 
Raumflugkörper im Abstand r0 vom Gravitationszentrum. Welche Arbeit musst du leisten, 
wenn du den Abstand auf r vergrößerst? 
Daniel: Wegen der Veränderlichkeit der Kraft F beschränke ich mich zunächst einmal auf 

eine kleine Verschiebung dr.  Dafür ist die Hubarbeit    rMmGrFW
r
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zu leisten. Die für den Transport von r0 bis r erforderliche Arbeit ergibt sich -  Moment mal -
durch Integration und Einsetzen der Grenzen zu 
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Jan: Ausgezeichnet! W könnte man als Hubarbeit bezeichnen. Sie findet sich wieder als 
Zuwachs der potentiellen Energie Wpot der Masse m. Der größtmöglichste Zuwachs ist zu 
erzielen, wenn m unendlich weit weggeschafft wird. 

Daniel: Das bedeutet doch, dass für ∞→r  die potentielle Energie der Masse m ihren 
Maximalwert erreicht hat? 
Jan: Natürlich! Aber jetzt kommt etwas, das ungewohnt ist: Man schreibt dieser maximal 
möglichen Energie den Wert 0 zu. Die Folge davon ist, dass Wpot für alle endlichen 
Entfernungen r kleiner als Null ist. Es gilt also 

r
GmM

W −=pot . 

Daniel: Wenn sich die Masse m am betrachteten Ort mit der Geschwindigkeit v bewegt, hätte 
sie also die Gesamtenergie 

   
r

GmMm
vW −= 2

ges
2

. 

Jan: Genau so ist es. Diese Beziehung wollen wir gleich einmal benutzen, um die 
Fluchtgeschwindigkeit vFl zu berechnen. Darunter verstehen wir die Geschwindigkeit, die wir 
der Masse m erteilen müssen, um sie von einer Stelle, die den Abstand r vom 
Gravitationszentrum hat, nach einem unendlich fernen Ort zu schaffen. Versuch es mal! 
Daniel: Am Startort hat die Masse m sowohl kinetische als auch potentielle Energie. Im 
unendlich weit entfernten Ort, wo die Masse m zur Ruhe kommen möge, werden beide 
Glieder der Gleichung Null. Es gilt also    

   0
2

2
Fl =−⋅

r
GmMm

v      und folglich    
r

GM
v ⋅= 2Fl . 

Jan: Bravo! Diese Formel werden wir später im Zusammenhang mit Schwarzen Löchern 
dringend benötigen. Aber vorher möchte ich dir noch etwas über das Gravitationsfeld und  
den Potentialtrichter erzählen. Unter Potential versteht man das Verhältnis der potentiellen 
Energie zur Masse m. Diese Größe ist unabhängig davon, ob m ein kleiner Meteorit, ein 
Raumschiff oder ein großer Mond ist.  
Daniel: Sie ist ein Charakteristikum 
des Gravitationsfeldes der Masse M – 
nicht wahr? 
Jan: Genau so ist es. In der 
Abbildung, die ich hier habe, ist das 
Potential als Funktion des Abstandes r 
vom Gravitationszentrum dargestellt 
(Volllinie in Abb. 1). Wenn du diese 
Kurve um die Ordinatenachse rotieren 
lässt, erhältst du einen Trichter, wie du 
ihn bei der Mündung einer Trompete 
vorfindest. 
 
 
 

Abb. 1: Potential einer homogenen 
Kugel vom Radius R 
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Daniel: Der Potentialtrichter, von dem du gesprochen hast? 
Jan: Ja. Mit seiner Hilfe kannst du ein zweidimensionales Modell schaffen, dass die 
Bewegung der Masse m im Gravitationsfeld der Masse M darstellt. Stell dir zunächst einmal 
eine horizontale Ebene vor, über die eine kleine Kugel rollt. Reibung und Luftwiderstand sei 
vernachlässigbar. Dann bewegt sich die Kugel geradlinig und mit gleichbleibender 
Geschwindigkeit über die Ebene.   
Daniel: Das ist eine Verkörperung des ersten Newtonschen Axioms, des Trägheitssatzes. 
Jan: Ganz recht. Nun nimm einmal an, in einem bestimmten Bereich sei die Ebene durch 
unseren Potentialtrichter ersetzt. 
Daniel: Die Kugel läuft schnurstracks oder auch in Spiralbahnen in ihn hinein und bleibt tief 
unten liegen. Bei einem Schwarzen Loch stelle ich mir einen besonders großen Trichter vor, 
der schon von weitem alles an sich zieht und verschlingt. 
Jan: Hier muss ich dich etwas korrigieren! Deine Vorstellung ist allzu stark von der 
Erfahrung geprägt, die man in der Praxis mit solchen mechanischen Modellen macht. Diese 
haben alle den Nachteil, dass Reibung und Luftwiderstand das verfälschen, was man 
eigentlich zeigen will, nämlich das Wechselspiel zwischen Bewegungsenergie und 
Lagenenergie unter der Bedingung, dass die mechanische Energie erhalten bleibt. 
Daniel: Ich glaube, ich weiß, was du meinst. Ich habe oft an Apparaten gestanden, die in 
Einkaufspassagen und Kaufhäusern stehen und in denen man Münzen in einem Trichter rollen 
lassen kann. Wenn nicht die Reibung wäre, käme der Besitzer des Apparates nie in den Besitz 
der Münzen. 
Daniel: Richtig! Im Weltraum jedoch kann in erster Näherung von Reibung abgesehen 
werden. Das musst du beachten, wenn du Erfahrungen mit mechanischen Modellen auf 
Bewegungen kosmischer Körper überträgst. 
Daniel: Das ist mir klar. Ich liege sicherlich richtig, wenn ich sage, dass eine Kugel, die weit 
entfernt von der Trichterachse den Rand des Trichters passiert, nur in der Richtung abgelenkt 
wird und dabei nichts an Bewegungsenergie verliert. 
Jan: Richtig.  
Daniel: Führt die ursprüngliche, aus großer Entfernung kommende Bahn näher an M heran, 
taucht die Kugel tiefer in den Trichter hinein, das heißt, sie verliert an Höhe (an potentieller 
Energie), wird dadurch schneller und kommt dem Mittelpunkt von M näher, um  im 
umgekehrten Vorgang den 
Potentialtrichter wieder zu 
verlassen. Ist sie weit genug weg, 
hat sie wieder ihre ursprüngliche 
Bewegungsenergie. 
Jan: Wenn man aus genügend 
großer Höhe auf das Modell blickt, 
sieht man eine hyperbolische oder 
parabolische Bahn.  
Daniel: Elliptische oder 
kreisförmige Bahnen würde man 
sehen, wenn die Kugel den Trichter 
gar nicht verlässt (siehe Abb. 2). 

 
Abb. 2: Bahnen rollender Kugeln im Potentialtrichter 
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Jan: Ganz recht. Aber nun eine grundsätzliche Bemerkung: Die Ursache, dass solche 
Bahnformen entstehen, ist die entsprechende Krümmung der Fläche, auf der unsere 
Modellkugel rollt. In der Realität sind die Bahnen der Körper nicht an eine bestimmte 
vorgegebene Ebene gebunden. Es gibt beliebig viele davon; denn unsere Welt ist 
dreidimensional. Daher sagt man; dass die Bahnen in ihrer Form von einer Krümmung des 
Raumes diktiert werden. 
Daniel: Wir brauchen also nicht die Fernwirkungskraft Newtons, die von einem Körper 
ausgeht und beim anderen anpackt. Die Masse M ruft eine Krümmung des Raumes hervor, die 
sich auf die Bewegung der Masse m auswirkt. Ich stelle mir dabei immer den Modellversuch 
vor, bei dem eine schwere Kreisscheibe auf eine horizontal ausgespannte Gummihaut gelegt 
wird, bevor man kleine Kugeln rollen lässt [Dirk Brockmann: Eine Unterrichtseinheit zum 
Thema „Relativitätstheorie“, 2. Teil, WiS!-Beitrag 1/2009, http://www.wissenschaft-
schulen.de/artikel/974598]. 
Jan: Eine nützliche Vorstellung! Doch wir sollten uns die Kreisbahn noch etwas näher 
ansehen. Sie verläuft im Potentialtrichter in gleichbleibender Höhe. Das bedeutet, dass die 
Modellkugel stets die gleiche potentielle Energie hat und somit auch eine gleich bleibende 
kinetische Energie. 
Daniel: Ich glaube, ich kann die Geschwindigkeit berechnen, welche die Kugel im Abstand r 
vom Gravitationszentrum haben muss! Die Kreisbewegung erfordert eine Zentripetalkraft, 
deren Größe sich aus der Beziehung 
   Zentripetalkraft = Masse mal Radialbeschleunigung,  

also aus  
r

mGMm v

r

2
K

2
⋅= .    

Daraus folgt: 
r

GM
v =K . 

Jan: Sehr gut! Fällt dir etwas auf? 
Daniel: Was sollte mir auffallen? 

Jan: Nun – das 2 -fache von vK ist die vorhin von uns berechnete Fluchtgeschwindigkeit. 

Daniel: Tatsächlich! Das bedeutet also, dass ein um das Gravitationszentrum kreisender 
Körper uns auf Nimmerwiedersehen verlässt, wenn wir seine kinetische Energie verdoppeln. 
Jan: Ja – und zwar auf einer Parabelbahn. Hyperbelbahnen ergeben sich, wenn wir die  
Bewegungsenergie auf mehr als das Zweifache erhöhen. – Eine Frage an dich: Was geschieht, 
wenn wir die Geschwindigkeit um weniger als das 2 -fache erhöhen? 

Daniel: Dann erreicht die Kugel nicht den unendlich weit entfernten Trichterrand und kehrt 
im Bogen zurück. Es entsteht eine Ellipsenbahn, die außerhalb der ursprünglichen Kreisbahn 
liegt. 
Jan: Und wie erzielen wir eine Ellipsenbahn, die näher an das Gravitationszentrum 
heranführt? 
Daniel: Dazu muss die Geschwindigkeit vK verringert werden. 
Jan: Richtig! Der Körper m kann sich dann nicht mehr auf der Kreisbahn halten, er nähert 
sich auf elliptischer Bahn dem Gravitationszentrum, wobei er an potentieller Energie verliert 
und schneller wird. Seine erhöhte Bewegungsenergie reicht aus, um ihn vom Punkt größter 
Annäherung wieder zum Ausgangspunkt auf der Kreisbahn zurückzuschaffen. 

http://www.wissenschaft-schulen.de/artikel/974598
http://www.wissenschaft-schulen.de/artikel/974598
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Daniel: Wenn es im Kosmos nun aber doch eine Reibung gäbe, würde es der Körper m nicht 
ganz schaffen – nicht wahr? 
Jan: Ja. 
Daniel: Und er würde sich dann auf spiraliger Bahn immer mehr dem Gravitationszentrum 
nähern, so wie die Kugel in unserem leider so unvollkommenen Modellversuch? 
Jan: Genau so ist es!  
Daniel: Wie ich gelesen habe, soll sich dieser Vorgang in der Akkretionsscheibe abspielen, 
die ein noch wachsendes Schwarzes Loch umgibt. 
Jan: Die  Gas- und Staubteilchen, aus denen solche Scheiben bestehen, gehorchen der 
Formel, die du vorhin abgeleitet hast, d. h. die Teilchen umkreisen das Schwarze Loch um so 
schneller, je näher sie ihm sind. Stellt man sich die Akkretionsscheibe aus konzentrischen 
Schichten aufgebaut vor, dann kann man sagen, dass jede Schicht durch Reibung an der 
benachbarten, weiter außenliegenden (und daher langsameren) Schicht abgebremst wird. So 
kommt es dazu, dass dem Schwarzen Loch auf Spiralbahnen Materie zugeführt wird. 
Daniel: Das habe ich verstanden. Völlig unklar ist mir aber noch, wieso diese Materie 
unwiederbringlich im Schwarzen Loch verschwinden kann. 
Jan: Das ist schnell gesagt. Wir hatten vorhin den Ausdruck für die Fluchtgeschwindigkeit 
vFL berechnet. Wenn die Materie tief genug in den Gravitationstrichter abgesunken ist, d. h. 
also, die Entfernung r vom Gravitationszentrum genügend klein geworden ist, dann wird vFL 
gleich der Lichtgeschwindigkeit. Das bedeutet, dass selbst Lichtquanten diesen Bereich des 
Gravitationsfeldes nicht mehr verlassen können. Man spricht vom „Ereignishorizont“. Alles, 
was dahinter liegt, ist nicht mehr von dieser Welt. 
Daniel: Das ist geradezu unheimlich! – Aber ich habe doch noch eine Frage. Ich glaube, dass 
ein solcher Ereignishorizont sogar bei jedem Planeten auftreten müsste, wenn man sich 
seinem Schwerpunkt nur genügend weit nähert, d. h. r ausreichend klein werden lässt. 
Jan: …was aber nicht geht, weil der Körper des Planeten im Wege ist. 
Daniel: Ich kann doch aber – zumindest theoretisch – einen Schacht bis zum Planeten-
mittelpunkt treiben, und in diesem würde für 0→r  und das Potential gegen ∞− gehen. 

Jan: Das stimmt nicht. 
Daniel: Wieso? Wir hatten doch vorhin ganz klar festgestellt, dass man das Gravitationsfeld 
einer kugelförmigen Masse so beschreiben kann, als ob es von einer punktförmigen erzeugt 
wäre.  
Jan: Oh je, da war ich nicht exakt genug! Die Feststellung gilt zwar, aber nur für den 
Außenraum der Kugel. Gehen wir darauf noch kurz ein! Für eine Hohlkugel der Masse M 
lässt sich zeigen, dass sich ihre Gravitation auf eine Masse m im Inneren überhaupt nicht 
auswirkt, d. h. m ist ohne Arbeitsleistung verschiebbar, das Potential konstant.  Ist R der 
äußere Radius der Hohlkugel, dann müsste sich in der Darstellung des Potentialverlaufs (siehe 
Abb. 1) für Rr ≤ eine Gerade parallel zur Abszissenachse  an die Hyperbel anschließen.  
Daniel: Hohlkugeln sind für uns uninteressant! Wie ist es bei homogenen Vollkugeln? 
Jan: Stell dir einen Punkt im Inneren vor, der den Abstand r* vom Kugelmittelpunkt hat. Er 
hat eine Hohlkugel mit Innenradius r* „über sich“ und eine Vollkugel mit Radius r* „unter 
sich“. Die Hohlkugel können wir aus der Betrachtung herauslassen. Es verbleibt nur die 
Wirkung der Vollkugel.  
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Daniel: Wir müssen also beachten, dass in der Formel für die Berechnung des Potentials nicht 
die Gesamtmasse M der Kugel, sondern nur die Masse der Kugel vom Radius r* einzusetzen 
ist.  
Jan: Genau! Dadurch bekommt man eine quadratische Abhängigkeit vom Abstand r. Die 
Hyperbel des Außenraums wird also für r < R durch eine Parabel ergänzt (punktierte Kurve in 

Abb. 1). Das an der Kugeloberfläche vorliegende Potential 
R

GM
− fällt zum 

Kugelmittelpunkt hin auf den Wert 
R

GM
⋅−

2
3

 ab. 

Daniel: Meine Idee, bei beliebigen Himmelskörpern eine Fluchtgeschwindigkeit von der 
Größe der Lichtgeschwindigkeit zu erreichen, indem man sich in einem Schacht dem 
Gravitationszentrum so weit wie möglich nähert, ist damit hinfällig. 
Jan: Richtig! Und wie steht es mit der Gravitationskraft? 
Daniel: Diese erhalte ich ja durch Differentiation des Potentials, das für 0 < r < R  eine 
quadratische Funktion ist. Deren Ableitung ist eine lineare Funktion von r. Die Kraft ist 
gleich Null im Zentrum und steigt linear mit dem Abstand bis auf die an der Oberfläche 
vorliegende Gewichtskraft an.  
Jan: Dem ist nichts 
hinzuzufügen! - Hier habe ich 
ein Bild, das noch einige 
quantitative Aspekte klar 
macht (Abb. 3). Die jeweils 
untereinander gezeichneten 
Potentialtrichter werden von 
einer Zentralmasse gleicher 
Größe M erzeugt. Die links 
dargestellten Trichter beziehen 
sich auf eine 4mal größere 
Zentralmasse als die Trichter 
rechts. Welchen Einfluss hat 
die Masse M ? 
 
Daniel: Links stellt sich derselbe Wert des Potential V(r) für einen 4mal größeren 
Abstandswert r ein. Das heißt also, dass die größere Zentralmasse so etwas wie einen 
Vulkankrater erzeugt, während der Potentialtrichter der kleinen Masse mehr an das Erdloch 
erinnert, das der Gärtner mit seinem Pflanzholz in den Erdboden drückt.  
Jan: Das Pflanzloch hat steilere Wände. Was bedeutet das? 
Daniel: Größere Gravitationskraft, im Beispiel 4mal stärker, weil Steigung 4fach größer. 
Jan: Exakt! – Bisher haben wir die nebeneinanderstehenden Potentialtrichter verglichen. 
Vergleiche nun bitte die untereinanderstehenden! 
Daniel: Jetzt geht es offensichtlich um die Tiefe des Trichters. 
Jan: Genauer! Unter welcher Bedingung sind beide Trichter gleich tief? 
Daniel: Weiß ich nicht! 
Jan: Ich helfe dir: Gleiche Tiefe bedeutet gleiche Fluchtgeschwindigkeit. 

Abb. 3: Potentialtrichter gleicher Masse (untereinander 
angeordnet) und gleichen Verhältnisses M/R (nebeneinander 
angeordnet). Die linke Masse ist 4mal größer als die rechte. 
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Daniel: Ach, natürlich! In der Formel für die Fluchtgeschwindigkeit muss der Quotient M/r in 
beiden Fällen gleich sein. Dabei ist für r jetzt der Radius  R des Himmelskörpers zu setzen. 
Jan: Jawohl! Gleich tiefe Trichter liegen vor, wenn M/R gleich ist. 
Daniel: Das heißt also, ich kann auch bei einer 1000mal kleineren Masse dieselbe 
Fluchtgeschwindigkeit vorfinden, nämlich dann, wenn der Radius R des Körpers auf ein 
Tausendstel verkleinert wird. 
Jan: Dabei ist zu bedenken, dass sich das Volumen auf ein Milliardstel verkleinert, die Dichte 
also enorm ansteigt.  
Daniel: Ich finde das alles fantastisch, und es ist dir zu verdanken, dass ich jetzt etwas mehr 
davon verstehe. 
Jan: Noch ein Hinweis von mir: Über die wunderbaren optischen Erscheinungen, die das 
Schwarze Loch hervorruft, kannst du dich an anderer Stelle informieren: [Ute Kraus: 
Reiseziel: Schwarzes Loch, Sterne und Weltraum, November 2005, sowie didaktisches 
Material bei WiS! 11/2005, http://www.wissenschaft-schulen.de/artikel/792697]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.wissenschaft-schulen.de/artikel/792697
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Aufgabe 1: 
Im Beitrag von Simon White ist die Rede von einem Neutronenstern mit der Masse der Sonne 
und der Größe Berlins. Man nehme an, dass mit der Größenangabe ein Durchmesser von etwa 
15 km gemeint ist. Wie groß ist die Fluchtgeschwindigkeit von der Oberfläche des 
Neutronensterns? 
 
Lösung:  
Masse der Sonne 1,99.1030 kg 
Gravitationskonstante G = 6,67. 10-11 m3 kg-1 s-2 
Radius des Neutronensterns 7500 m 
 
Daher ergibt sich für die Fluchtgeschwindigkeit 
 

m7500
kg1099,1skgm1034,13 3021311

Fl ⋅
⋅⋅⋅⋅⋅

=
−−−

v   
 

vFl = 188 000 km/s 
 

Obwohl der Durchmesser des Neutronensterns nur ein Hunderttausendstel des 
Sonnendurchmessers beträgt, ist die Fluchtgeschwindigkeit noch deutlich kleiner als die 
Lichtgeschwindigkeit. 
  
 
 
Aufgabe 2: 
Bei einigen besonders massereichen Sternen kann der Zusammensturz noch weiter gehen, so 
dass ein Schwarzes Loch entsteht. Auf welchen Durchmesser müsste die Kugel der Sonne 
komprimiert werden, damit sie ein Schwarzes Loch wird? 
 
Lösung:  
Aus der Formel für die Fluchtgeschwindigkeit ergibt sich 

v
GMr 2

Fl

2
=  . 

Die gravitierende Masse wird zum Schwarzen Loch, wenn die Fluchtgeschwindigkeit gleich 
der Lichtgeschwindigkeit wird. Es gilt also 

   ( )s 1- m1083

kg1099.1skgm1034,13
2

3021311

⋅⋅

⋅⋅⋅
=

−−−

r  

    

   m 1095,2 3⋅=r  
Die Sonnenmasse müsste in einer Kugel von knapp 3 km Radius konzentriert sein. 
 
 
 
Aufgabe 3: 
Man beantworte die entsprechende Frage für die Erde! 
 
Lösung: 
Die Masse unserer Erde müsste als kleine Kirsche vorliegen (Radius = 0,88 cm). 

 


