Direkt zum Inhalt

Der Mathematische Monatskalender: Brahmagupta (598–670)

Brahmagupta (598 – 670)Laden...

Zu Beginn des 9. Jahrhunderts führte Al-Khwarizmi das dezimale Stellenwertsystem unter Verwendung der indischen Ziffern in die islamische Welt ein. In seinem Werk Al Kitāb al-muhtasar fi hisāb al-ğabr w-al-muqābala gab er für die Lösung quadratischer Gleichungen unterschiedliche Verfahren an, da er als Koeffizienten nur positive Zahlen zuließ: \(ax^2 + bx = c\), \(ax^2 + c= bx\) beziehungsweise \(ax^2= bx +c\).

Dies war ein für die Entwicklung der Mathematik folgenreicher "Rückschritt", denn bereits 200 Jahre zuvor hatte der indische Mathematiker Brahmagupta eine Lösungsformel für Gleichungen des Typs \(ax^2+bx=c\) mit beliebigen Koeffizienten angegeben: \[x=\frac{\sqrt{b^2+4ac}-b}{2a}\]

Brahmagupta wird im Jahr 598 in Bhinmal geboren, einer Stadt im Nordwesten Indiens (heute: Bundesstaat Rajasthan). Bereits im Alter von 30 Jahren verfasst er ein Werk, das unter dem Namen Brāhmasphutasiddhānta (Vervollkommnung der Lehre Brahmas, siddhānta = Abhandlung) überliefert ist. Im Jahr 665 folgt mit Khandakhādyaka eine weitere Abhandlung, die sich vor allem mit astronomischen Rechnungen beschäftigt. Brahmagupta ist inzwischen als Leiter der astronomischen Beobachtungsstation in Ujjain tätig. Diese im heutigen Bundestaat Madhya Pradesh gelegene Stadt gehört zu den sieben heiligen Städten Indiens.

Nur zwei der insgesamt 25 Kapitel von Brāhmasphutasiddhānta beschäftigen sich mit mathematischen Fragestellungen, nämlich Kapitel 12 (Ganitādhyāya, von gana = zählen) und Kapitel 18 (Kuttakādhyāya, von kuttaka = wörtlich: zerkleinern). Trotz etlicher, zum Teil sehr kritischer Anmerkungen zum 130 Jahre zuvor erschienenen Werk seines Vorgängers Āryabhata ist es wohl kein Zufall, sondern eher ein Zeichen der Verehrung, dass das 12. Kapitel genau doppelt so viele Verse enthält wie das entsprechende ganita-Kapitel der Āryabhatīya. Hinsichtlich der Rechenverfahren und der Lösung verschiedener Anwendungsaufgaben findet man bei Brahmagupta allerdings zunächst kaum mehr als das, was Āryabhata zusammengestellt hatte.

Erst in den Versen 10 bis 13 des 12. Kapitels geht Brahmagupta über die Behandlung einfacher proportionaler Beziehungen hinaus. Anhand von zwei Beispielen erläutert er die folgende Regel der fünf Größen: Man trage die Größen in die Spalten einer Tabelle ein. Die Lösung findet man, indem man zwei der Eintragungen vertauscht; dann stehen die Faktoren des Zählers und des Nenners eines Bruchs übereinander.

BrahmaguptaLaden...

Die Verse 21 bis 32 des Brāhmasphutasiddhānta beschäftigen sich mit Berechnungen von Flächeninhalten und Seitenlängen. Hier finden sich die bemerkenswerte Näherungsformel zur Bestimmung des Flächeninhalts von Vierecken \(A = \frac{a+c}{2} \cdot \frac{b+d}{2}\) sowie die berühmte Formel des Brahmagupta zur Berechnung des Flächeninhalts von Sehnenvierecken \(A=\sqrt{(s-a)\cdot (s-b) \cdot (s-c) \cdot (s-d)}\), wobei mit \(s=\frac{1}{2} (a+b+c+d)\) der halbe Umfang des Vierecks bezeichnet ist.

Auch diese Formel wird nicht bewiesen, sondern – wie in der indischen Mathematik üblich – nur als Rechenvorschrift (Merkregel in Versform) angegeben.

Im Falle von \(d = 0\) handelt es sich um die bereits von Heron hergeleitete Formel zur Berechnung des Flächeninhalts eines Dreiecks. Daher wird die oben angegebene Formel auch als Brahmaguptas Verallgemeinerung der Heron'schen Formel bezeichnet. Brahmagupta gibt keine Einschränkung für die Gültigkeit der Formel an; sie gilt aber nicht für beliebige Vierecke, sondern nur für Sehnenvierecke. Da sich jedoch die weiteren Ausführungen des Kapitels auf Vierecke beziehen, deren Eckpunkte auf einem Kreis liegen, wird vermutet, dass Brahmagupta nur solche Vierecke meint.

Brahmagupta2Laden...

Bemerkenswert sind auch die Formeln, mit denen Streckenlängen in Dreiecken und in symmetrischen Trapezen berechnet werden können:

  • In einem beliebigen Dreieck gilt für die Höhe \(h_c\) sowie die durch die Höhe festgelegten Abschnitte \(c_1\) und \(c_2\) der Seite \(c\) (und analog für die anderen Höhen und Seiten im Dreieck): \[c_1=\frac{1}{2}\cdot \left( c+ \frac{b^2-a^2}{c}\right) \quad ; c_2=\frac{1}{2}\cdot \left( c- \frac{b^2-a^2}{c}\right)\] sowie \[h_c = \sqrt{a^2-c_2^2}=\sqrt{b^2-c_1^2}.\]

  • In gleichschenkligen Trapezen gilt: \(e=\sqrt{a\cdot c+ b \cdot d}\) (Folgerung aus dem Satz des PTOLEMÄUS), \(h=\sqrt{e^2 – \left( \frac{a+c}{2}\right)^2}\), außerdem für den Umkreisradius \(r=\frac{b\cdot e}{2h}\).

Brahmagupta3Laden...

Brahmagupta gibt Formeln für die Länge der Diagonalen \(e\), \(f\) in beliebigen Sehnenvierecken an: \(\frac{e}{f}=\frac{ad+bc}{ab+cd}\), wobei \(e=\sqrt{\frac{(ad+bc)\cdot (ac+bd)}{ab+cd}}\) und \(f=\sqrt{\frac{(ab+cd)\cdot (ac+bd)}{ad+bc}}\), und für Sehnenvierecke mit zueinander orthogonalen Diagonalen (sogenannte Brahmagupta-Vierecke) formuliert er den Satz:

  • Eine Gerade, die durch den Schnittpunkt der beiden Diagonalen verläuft und eine der Seiten senkrecht schneidet, halbiert die gegenüberliegende Viereckseite.

In den Versen 33 bis 39 beschäftigt sich Brahmagupta mit dem Problem, Dreiecke, symmetrische Trapeze und Sehnenvierecke zu finden, deren Seitenlängen und Flächeninhalte rational sind. Beispielsweise ergeben sich für \(u\), \(v\), \(w \in \mathbb{N}\) mit \(v\), \(w < u\) solche rationalen Dreiecke mit \[ a= \frac{1}{2}\cdot \frac{u^2+v^2}{v};\quad b= \frac{1}{2}\cdot \frac{u^2+w^2}{w}; \quad c= \frac{1}{2}\cdot \frac{u^2-v^2}{v} +\frac{1}{2}\cdot \frac{u^2-w^2}{w}\]

Das 18. Kapitel beginnt mit astronomischen Berechnungen wie zum Beispiel die Bestimmung der Anzahl der Tage zwischen zwei Zeitpunkten, an denen ein Planet an der gleichen Stelle am Himmel zu sehen ist. Dann folgen – zum ersten Mal in der Mathematikgeschichte – Rechenregeln für positive und negative Zahlen sowie für die Zahl Null. Null wird also als Zahl angesehen, ist nicht nur Platzhalter für eine leere Stelle.

Brahmagupta bezeichnet positive Zahlen als Vermögen, negative Zahlen als Schuld. Beispielsweise findet man: Eine Schuld minus null ist eine Schuld; ein Vermögen minus null ist ein Vermögen. Null minus null ist null. Null minus eine Schuld ist ein Vermögen. Null minus ein Vermögen ist eine Schuld. Das Produkt (der Quotient) aus einer Schuld und einem Vermögen ist eine Schuld, von zwei Schuldbeträgen oder von zwei Vermögen ein Vermögen. Das Produkt von null mit einem Vermögen, einer Schuld oder mit null ist null. Zwar gibt er auch die falsche Regel Null dividiert durch null ist null an, notiert aber ansonsten für die Division durch null, dass man null in den Nenner eines Bruches schreiben darf – allerdings ohne Erläuterung, was das bedeutet.

Weitere Verse beschäftigen sich mit der oben angeführten Lösungsformel für quadratische Gleichungen mit einer Variablen. Danach geht Brahmagupta auf Gleichungen des Typs \(N\cdot x^2+1=y^2\) ein, die später (irrtümlich) als Pell'sche Gleichungen bezeichnet werden:

Wähle irgendeine Quadratzahl \(a^2\), multipliziere sie mit \(N\) und addiere eine geeignete Zahl \(k\), so dass die Zahl \(b^2 = N\cdot a^2 + k\) eine Quadratzahl ist. Eine Lösung der Gleichung \(N\cdot (2\cdot a \cdot b)^2 + k^2 = \left(N\cdot a^2 + b^2\right)^2\) ist \(\left(\frac{2\cdot a \cdot b}{k}; \frac{N\cdot a^2+b^2}{k}\right)\); diese erfüllt auch die Ausgangsgleichung.

In Diophants Arithmetica findet man den Satz, dass das Produkt zweier Summen von Quadratzahlen auf zwei Arten als Summe von Quadratzahlen darstellbar ist:

\( (a^2+b^2)\cdot (c^2+d^2)\) \(= (ac-bd)^2 + (ad+bc)^2\) \(= (ac+bd)^2 + (ad-bc)^2\)

Fibonacci veröffentlicht 1225 im Liber quadratorum Brahmaguptas Verallgemeinerung:

\( (a^2+n\cdot b^2) \cdot (c^2 + n\cdot d^2) \) \(= (ac-n\cdot bd)^2 + n \cdot (ad+bc)^2 \) \(= (ac+n\cdot bd)^2 + n \cdot (ad-bc)^2 \)

Schließlich wird noch ein Verfahren angegeben, mit dem man Zahlen \(x\), \(y\) findet, sodass sowohl \(x+y\) als auch \(x–y\) und \(x\cdot y+1\) Quadratzahlen sind: Man wähle dazu beliebige Zahlen \(a\) und \(b\) mit \(a>b\) und berechne dann \(x=(a^2+b^2) \cdot \frac{2a^2}{b^4}\) und \(y=(a^2-b^2)\cdot \frac{2a^2}{b^4}\).

Brahmagupta (598 – 670)

Datei herunterladen
PDF (432.9 KB)

Lesermeinung

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Leserzuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Leserzuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmer sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Lesermeinungen können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Partnervideos