Direkt zum Inhalt

Der Mathematische Monatskalender: Eudoxos von Knidos (408–355 v. Chr.)

Eudoxos lehrte seine Zeitgenossen den Umgang mit den damals neuen und erschreckenden irrationalen Zahlen.
Eudoxos von Knidos Laden...

Auch wenn man von seinen mathematischen Werken noch nicht einmal die genauen Titel kennt und von seinen übrigen Schriften nur Fragmente überliefert wurden, kann man sagen, dass Eudoxos von Knidos einer der bedeutendsten Mathematiker der Antike war.

Bekannt ist, dass der in Knidos (Kleinasien) geborene Wissenschaftler nach Tarent (griechische Kolonie in Süditalien) reist, um dort bei Archytas, einem der Nachfolger des Pythagoras, erste mathematische Studien zu betreiben. Auf Sizilien erwirbt er bei Philiston medizinische Kenntnisse, in Athen besucht er vermutlich die Vorlesungen des Platon und anderer Philosophen der Akademie, in Heliopolis (Ägypten) lässt er sich von den Priestern in die Techniken der astronomischen Beobachtung einführen. Danach gründet er in Kyzikos, einer an der Südküste des Marmara-Meers gelegenen griechischen Kolonie, eine eigene Schule und sammelt zahlreiche Studenten um sich.

Um 368 besucht er Athen ein zweites Mal, begleitet von seinen Schülern, und kehrt anschließend als angesehener Bürger in seine Geburtsstadt Knidos zurück, wo er ein Observatorium errichtet. Seine astronomischen Beobachtungen bilden die Grundlage für (mindestens) ein Werk, das Hipparchos von Rhodos (190 – 120 vor Christus) zu seinen Untersuchungen und Überlegungen dient, wie dieser dankbar berichtet.

Durch Aristoteles (384 – 322 vor Christus) ist überliefert, dass Eudoxos ein System zur Beschreibung der Planetenbewegungen entwickelt hat. Dieses besteht aus 27 Sphären, in deren Mittelpunkt sich die Erde befindet.

Auch verfasst Eudoxos ein aus sieben Bänden bestehendes Werk zur Geografie, in dem er die Länder und Völker der bekannten Welt beschreibt, die politischen Systeme in diesen Ländern erläutert und über die religiösen Vorstellungen der Völker berichtet. Auch dieses Werk ist verschollen, wird aber von zahlreichen später lebenden Autoren der Antike zitiert.

Die Entdeckung des Pythagoräers Hippasos von Metapont, dass nicht alle in der Geometrie auftretenden Größen kommensurabel sind, also mit einem gemeinsamen Maß messbar, hatte um das Jahr 500 vor Christus die bis dahin geltende Lehrmeinung "Alles ist Zahl" erschüttert. Beispielsweise kann das Verhältnis der Länge einer Diagonale eines Quadrats zur Seitenlänge des Quadrats nicht durch das Verhältnis zweier natürlicher Zahlen beschrieben werden.

Eudoxos findet einen genialen Weg, mit diesem Problem umzugehen. Euklid übernimmt später (um das Jahr 300 vor Christus) die Proportionenlehre des Eudoxos als Buch V der Elemente.

Zunächst definiert Eudoxos, was unter einem Verhältnis zu verstehen ist: Ein Verhältnis ist die Beziehung zweier vergleichbarer Dinge der Größe nach (V.3). Ein Verhältnis gibt an, wie oft die erste Größe die zweite übertrifft, wenn es mit der zweiten vervielfacht wird (V.4).

Dann erfolgt die – auf den ersten Blick – kompliziert erscheinende, jedoch äußerst geschickte Definition V.5: Größen stehen im gleichen Verhältnis, die erste zur zweiten wie die dritte zur vierten, wenn für beliebige, aber gleiche Vielfache der ersten und der dritten Größe und für beliebige, aber gleiche Vielfache der zweiten und vierten Größe gilt, dass die paarweise betrachteten Vielfachen entweder beide größer oder beide gleich oder beide kleiner sind.

In der heute üblichen Schreibweise ausgedrückt: Zwei Proportionen \(a\ :\ b\) und \(c\ :\ d\) von Größen \(a\), \(b\), \(c\), \(d\) stimmen genau dann überein, also \(a\ :\ b = c\ :\ d\), wenn für beliebige Vielfache \((m,n \in \mathbb{N})\) gilt: Aus \(m \cdot a > n \cdot b\) folgt \(m \cdot c > n \cdot d\); aus \(m \cdot a = n \cdot b\) folgt \(m \cdot c = n \cdot d\); aus \(m \cdot a < n \cdot b\) folgt \(m \cdot c < n \cdot d\).

Das Geniale am Ansatz des Eudoxos ist, dass seine Definition sowohl für rationale als auch für irrationale Größen anwendbar ist: Bei rationalen Größen kommt der Fall der Gleichheit vor, das heißt, es lassen sich Vielfache \(m\), \(n\) angeben, für welche die Gleichheit gilt. Wenn aber die Größen \(a\) und \(b\) nicht kommensurabel sind, dann gibt es sowohl rationale Zahlen \(\frac{m}{n}\), für die \(\frac{m}{n} > \frac{b}{a}\) gilt, als auch solche, für die \( \frac{m}{n} < \frac{b}{a}\) gilt.

Dies ist im Prinzip nichts anderes als die Idee, dass durch eine Zahl die Menge der reellen Zahlen in zwei disjunkte Teilmengen zerlegt wird. Aber es dauert noch über 2200 Jahre, bis Richard Dedekind diese Idee durch den nach ihm benannten (Dedekind'schen) Schnitt umsetzt.

Zu Beginn des Buches X der Elemente des EUKLID findet man eine Methode zur Flächenberechnung, die seit dem 17. Jahrhundert als Exhaustionsmethode bezeichnet wird: Sind zwei ungleiche Größen gegeben und nimmt man von der größeren mehr als die Hälfte weg, vom Rest wieder mehr als Hälfte und so weiter, dann kommt man irgendwann zu einem Rest, der kleiner ist als die gegebene kleinere Größe.

Mithilfe dieser Ausschöpfungsmethode kann also die Maßzahl einer Fläche beliebig genau bestimmt werden, beispielsweise die eines Kreises durch einbeschriebene Vielecke. Der Satz beruht auf einer Anwendung des sogenannten Archimedischen Axioms, welches besagt, dass man zu je zwei Größen ein Vielfaches der einen Größe bilden kann, sodass dieses größer ist als die andere Größe. Es wäre durchaus angemessen, wenn dieser Grundsatz nach Eudoxos benannt worden wäre; denn dieser wird von Archimedes auch ausdrücklich als der Urheber des Axioms bezeichnet.

Buch XII der Elemente beschäftigt sich mit Flächeninhalten und Volumina. Auch diese Ausführungen beruhen überwiegend auf Sätzen und Beweisen, die Euklid von Eudoxos übernimmt. Der Beweis von Satz 2: Flächeninhalte von Kreisen verhalten sich wie die Quadrate ihrer Durchmesser wird mithilfe der Methode des indirekten Beweises (reductio ad absurdum) geführt. Die Annahme, das Verhältnis der Kreisflächen sei kleiner als das Verhältnis der Quadrate der Durchmesser, führt zum Widerspruch ebenso wie die Annahme, das Verhältnis sei größer.

Analog erfolgt dann auch der Beweis für Satz 18: Volumina von Kugeln verhalten sich wie Kuben ihrer Durchmesser. Die zwischen Satz 2 und Satz 18 stehenden Sätze beschäftigen sich mit der Berechnung des Volumens einer Pyramide beziehungsweise eines Kegels.

Bereits Demokrit (460 – 370 vor Christus) kannte die Formeln, aber wie Archimedes in seiner Schrift Über Kugel und Zylinder ausführt, erfolgte der Beweis der Formeln erst durch Eudoxos.

Zunächst erläutert er, wie Pyramiden mit dreieckiger Grundfläche in zwei gleiche, zur gesamten Pyramide ähnliche Pyramiden und zwei Prismen zerlegt werden können. Dann zeigt er, dass sich die Volumina von gleich hohen Pyramiden mit dreieckiger (oder allgemein polygonaler) Grundfläche wie die Flächeninhalte der Grundflächen verhalten. Im nächsten Schritt stellt er dar, wie man ein Prisma in drei volumengleiche Pyramiden mit dreieckiger Grundfläche zerlegen kann. Aus dem Satz, dass sich die Volumina von zueinander ähnlichen Pyramiden wie die Kuben entsprechender Kantenlängen verhalten, und dem Satz, dass die Grundflächen von volumengleichen Pyramiden umgekehrt proportional zu den Höhen sind, ergibt sich schließlich, dass das Volumen einer Pyramide genau ein Drittel des Volumens eines Prismas mit gleicher Grundfläche und gleicher Höhe ausmacht.

Eudoxos beschäftigt sich auch mit dem Deli’schen Problem der Würfelverdopplung. Eratosthenes (276 – 194 vor Christus) berichtet, dass Eudoxos, der Gottähnliche, eine graphische Lösung des Problems gefunden habe. Leider sind keine näheren Einzelheiten hierzu überliefert. Platon soll allerdings die Vorgehensweise kritisiert haben, weil hierdurch die Mathematik verunreinigt würde.

Eudoxos von Knidos (408 – 355 v. Chr.)

Datei herunterladen
PDF (1.4 MB)

Lesermeinung

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Leserzuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Leserzuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmer sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Lesermeinungen können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Partnervideos