Der Satz von Lindemann-Weierstraß hat es in sich. Sie haben von ihm noch nie gehört? Dann gehören Sie wohl zur absoluten Mehrheit im Land. Denn außerhalb des Mathematikstudiums kommt man damit vermutlich selten in Kontakt. In seinem Zentrum steht diese Formel:

Satz von Lindemann-Weierstraß
© public domain
(Ausschnitt)
 Bild vergrößernSatz von Lindemann-Weierstraß

Hat man eine Menge an beliebigen algebraischen Zahlen β1,…, βn (die nicht alle gleich 0 sein dürfen) und eine Menge an algebraischen Zahlen α1,…, αn (von denen keine zwei identisch sein dürfen), und kombiniert man diese Zahlen wie in der obigen Formel beschrieben mit der Exponentialfunktion e, dann ist das Ergebnis immer ungleich 0.

Anders gesagt: Exponentialpolynome der oben beschriebenen Form haben keine Nullstellen. Das klingt allerdings immer noch sehr abstrakt und für Nichtmathematiker unverständlich. Mit diesem Satz konnte der deutsche Mathematiker Ferdinand von Lindemann im Jahr 1882 aber ein Jahrtausende währendes Problem lösen und zeigen, dass die "Quadratur des Kreises" unmöglich ist.

Bei dieser klassischen Frage der Geometrie geht es um Konstruktionen, die nur mit Lineal (ohne Markierung) und Zirkel durchgeführt werden müssen. Im antiken Griechenland sah man nur diese Hilfsmittel als zufrieden stellend an und versuchte eine Geometrie zu entwickeln, die nur auf diesen Werkzeugen basierte. Bei der Quadratur des Kreises wurde nun probiert, aus einem vorgegebenen Kreis in endlich vielen Schritten mit Lineal und Zirkel ein Quadrat mit demselben Flächeninhalt zu konstruieren.

Von der Antike über das Mittelalter bis in die Neuzeit hinein versuchten sich Mathematiker vergeblich an der Lösung dieser Aufgabe. Im 17. Jahrhundert begann man damit die geometrische Konstruktion in mathematische Gleichungen zu übersetzen. Alles was man mit Lineal und Zirkel zeichnen kann, ist man auch in der Lage mit endlichen vielen Additionen, Subtraktionen, Multiplikationen, Divisionen und Quadratwurzeln zu berechnen. Die Längen, die sich durch dieses Vorgehen konstruieren beziehungsweise berechnen lassen, gehören zu den algebraischen Zahlen. Zahlen, die der Konstruktion mit Lineal und Zirkel nicht zugänglich sind, werden dagegen transzendent genannt.

Das Problem der Quadratur des Kreises wurde nun zu einem anderen Problem: Ist die Zahl π (also das Verhältnis von Umfang zu Durchmesser eines Kreises) algebraisch oder transzendent? Um diese Frage zu beantworten, entwickelte von Lindemann den nach ihm benannten Satz und konnte damit beweisen, dass π transzendent ist. Dazu nutzte er die berühmte "eulersche Identität", laut der eπi + 1 = 0 sein muss. Setzt man allerdings im Satz von Lindemann-Weierstraß β1 =β2=1,α2 = 0 und nimmt an, dass π eine algebraische Zahl ist, so dass man α1 = πi setzen kann, dann folgt daraus ein Widerspruch. Die Annahme π sei algebraisch, muss also falsch sein. Oder anders gesagt: Wollte man nur mit Zirkel und Lineal aus einem vorgegebenen Kreis ein Quadrat gleichen Flächeninhalts konstruieren, wären dafür unendlich viele Schritte notwendig. Die Quadratur des Kreises ist unmöglich.

Hobbymathematiker ignorierten diese Erkenntnis aber oft und probierten weiterhin das Unmögliche. Das führte ein paar Jahre nach Lindemanns Erkenntnis auch zu einer der berühmtesten Anekdoten über die Zahl π. Im Jahr 1894 veröffentlichte der amerikanische Arzt Edward Goodwin eine Arbeit, in der er behauptet, die Quadratur des Kreises geschaffen zu haben. Aus seinen mathematischen Formeln folgte außerdem, dass die Zahl π nicht nur nicht transzendent, sondern exakt gleich vier ist. Die Arbeit war mathematisch fehlerhaft; trotzdem reichte 1897 ein Abgeordneter des Parlaments von Indiana aus Goodwins Wahlkreis einen Gesetzesentwurf zur Abstimmung ein, in dem genau dieser Wert für π offiziell festgelegt werden sollte. Das Repräsentantenhaus stimmte zu – der Senat, die zweite Kammer des Parlaments, wurde allerdings von einem echten Mathematiker auf die Unsinnigkeit dieses Entwurfs hingewiesen und lehnte den Beschluss des Gesetzes ab. Unmöglich bleibt unmöglich.