Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Physik: Ausweg aus dem schwarzen Loch

Was Schwarze Löcher einmal verschluckt haben, sollten sie eigentlich nie mehr frei geben. Doch dem widersprechen quantenmechanische Grundsätze. Unterschiedliche Szenarien sollen das Problem lösen. Können neue Beobachtungstech­niken offenbaren, was wirklich passiert?
Schwarzes Loch

Am 10. April 2019 bekam die Menschheit zum ersten Mal die unmittelbare Umgebung eines Schwarzen Lochs zu sehen. Zuvor hatte das Team des Event Horizon Telescope (EHT) weltweit verteilte Observatorien vernetzt und auf die Galaxie M87 gerichtet. Nach intensiver Auswertung präsentierten sie das Ergebnis: eine Aufnahme des Objekts im Zentrum der Galaxie, das die 6,5-milliardenfache Masse unserer Sonne auf sich vereint. Das war eine atemberaubende Leistung – der erste direkte Blick auf eines der geheimnisvollsten Objekte des Universums. Darüber hinaus geben solche Bilder und ähnliche Beobachtungen vielleicht neue Hinweise auf die Lösung eines ebenso hartnäckigen wie grundlegenden physikalischen Rätsels.

Dabei handelt es sich um das so genannte Informationsparadoxon. Es dreht sich um die Frage, was mit der Information über Dinge geschieht, die in ein Schwarzes Loch stürzen. Die darauf aufbauenden Überlegungen machen allem Anschein nach die bloße Existenz von Schwarzen Löchern mit den quantenmechanischen Gesetzen unvereinbar: jenen Regeln, denen sämtliche Materie im Universum auf kleinsten Skalen folgt. Diese Inkonsistenz aufzulösen, könnte nicht weniger als eine Revolution erfordern – wie vor einem Jahrhundert beim Sturz der klassischen Physik durch die Quantenmechanik.

Theoretiker haben im Lauf der letzten Jahrzehnte viele Ideen untersucht, mussten dabei aber praktisch ohne direkte Hinweise aus Experimenten auskommen …

Kennen Sie schon …

Sterne und Weltraum – Bilderflut - Neues vom James-Webb-Teleskop

Neues vom James-Webb-Teleskop - Schwarze Löcher: Nächstgelegene Raumzeitfalle entdeckt - Sonnenwind: Komplexes Entstehen weiter entschlüsselt - Astro-Highlights: Die besten Ereignisse am Himmel in 2023

Spektrum - Die Woche – Das Jahr in der Wissenschaft

Die ersten Bilder des James Webb Space Telescopes, der Angriff auf die Ukraine, Nobelpreise für Paläogenetik, Quantenphysik und Click-Chemie: Wir blicken zurück auf die Themen, die die Wissenschaft im Jahr 2022 bewegt haben.

Spektrum der Wissenschaft – Mathematik für die Zukunft

In »Mathematik für die Zukunft« stellen wir den neuen Formalismus der verdichteten Mengen vor, der von Peter Scholze und Dustin Clausen entworfen wurde. Daneben: Evolution der Säugetiere, rätselhafte Radioblitze, Funde in Jerusalem.

Schreiben Sie uns!

1 Beitrag anzeigen

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Giddings, S. B.: Black holes in the quantum universe. Philosophical Transactions of the Royal Society A 377, 2019

Harlow, D.: Jerusalem lectures on black holes and quantum information. Reviews of Modern Physics 88, 2016

Hawking, S. W.: Particle creation by black holes. Communications in Mathematical Physics 43, 1975

Hawking, S. W., Perry, M. J. et al.: Soft hair on black holes. Physical Review Letters 116, 2016