Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Quantenphysik: Stringtheorie für Festkörper

Ein typisches Phänomen der Quantenwelt ist die so genannte Verschränkung. Sie wurde bisher nur an einzelnen Teilchen oder winzigen Molekülwolken untersucht, doch auch die Partikel in einem Festkörper können hochkomplexe Quantenzustände bilden. Zu deren Beschreibung eignet sich überraschenderweise die Stringtheorie der Teilchenphysik.
Verschränkung am Beispiel eines Magneten über einem Supraleiter

Dass ich jemals an einer Konferenz für Stringtheoretiker teilnehmen würde, hätte ich mir bis vor einigen Jahren nicht träumen lassen. Mein Gebiet ist die Festkörperphysik. Wir erforschen Metalle und Supraleiter, die wir im Labor auf Temperaturen nahe dem absoluten Nullpunkt abkühlen. Das hat erst einmal nichts mit Stringtheorie zu tun. Deren Experten rechnen mit Energieniveaus weit oberhalb all dessen, was sich im Labor erzeugen oder im bekannten Universum beobachten lässt. Sie erkunden die exotische Physik Schwarzer Löcher und zusätzliche Dimensionen der Raumzeit. Für sie ist die Gravitation die dominante Naturkraft; für mich spielt sie keine Rolle.

Den höchst unterschiedlichen Forschungsgebieten entsprechen zwei einander ziemlich fremde Denkweisen. Stringtheoretiker genießen hohes Ansehen, und ich besuchte ihre Konferenz voll Ehrfurcht vor ihrem mathematischen Können. Mehrere Monate lang hatte ich einschlägige Artikel und Bücher gelesen – und nur zu oft den Faden verloren. Ohne Zweifel würden die Stringtheoretiker mich als ignoranten Anfänger abtun. Umgekehrt waren ihnen die einfachsten Begriffe meines Fachgebiets nicht vertraut. Ich musste erklärende Skizzen zeichnen, die ich sonst nur in Anfängervorlesungen verwende.

Was also suchte ich dort? In den letzten Jahren haben wir Festkörperphysiker verblüffende Beobachtungen gemacht: Unsere Materialien bilden Phasenzustände, die sich nur durch ein zutiefst quantenphysikalisches Naturphänomen erklären lassen. ...

Kennen Sie schon …

Spektrum der Wissenschaft – Vom Quant zur Materie: Vom Quant zur Materie

Vom Quant zur Materie - Quantenfeldtheorie: Das wacklige Fundament der Physik • Moderne Alchemie: Wie sich Atome mit Lichtpulsen manipulieren lassen • Plasmabeschleuniger: Revolutionär kompakte Teilchenschleudern

Spektrum Kompakt – Quantencomputer - Der Weg in die praktische Anwendung

Im Jahr 2019 präsentierte Google den ersten Quantencomputer, der klassische Rechner übertrumpfen sollte. Mit weiteren Unternehmen wie IBM liefert sich der Konzern ein Rennen um die Frage: Wie schnell wird die Technologie die Praxis erobern?

Spektrum der Wissenschaft – Das Fundament der Physik

»Spektrum der Wissenschaft« berichtet über das Quantenfeldtheorie - Fundament der Physik. Außerdem im Heft: Hyperschallwaffen - Hintergründe eines neuen Wettrüstens, Geochemie - Wo Kohlendioxid zu Stein wird, Dingos - Evolutionäre Grenzgänger zwischen Wolf und Hund.

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Johnson, C. I., Steinberg, P.: What Black Holes Teach about Strongly Coupled Particles. In: Physics Today 63, S. 29 - 33, 2010

Klebanov, I. R., Maldacena, J. M.: Solving Quantum Field Theories in Curved Spacetimes. In: Physics Today 62, S. 28 - 33, 2009

Sachdev, S., Keimer, B.: Quantum Criticality. In: Physics Today 64, S. 29 - 35, 2011

Sachdev, S.: What can Gauge-Gravity Duality Teach us about Condensed Matter Physics? In: Annual Review of Condensed Matter Physics 3, S. 9 - 33, 2012